[スポンサーリンク]

ケムステニュース

日本企業クモ糸の量産技術確立:強さと柔らかさあわせもつ究極の素材

[スポンサーリンク]

人工クモ糸、量産技術を開発 鋼鉄より強い「夢の繊維」

クモの糸を人工的に作った「合成クモ糸繊維」の量産技術の開発に、山形県鶴岡市のバイオベンチャー企業が成功し、24日、東京都港区の六本木ヒルズで、織り上げたドレスを披露した。

クモ糸は、鋼鉄より4倍ほど強く、ナイロンより柔軟なことから「夢の繊維」と言われる。だが、クモは縄張り争いや共食いが激しく、蚕のように人工飼育できないため、工業化は困難とされてきた。

開発したのは鶴岡市のスパイバー(関山和秀社長)。単純な微生物にもクモ糸のたんぱく質が作れるよう合成した遺伝子をバクテリアに組み込んで培養し、たんぱく質を生成。紡績技術も確立し、合成クモ糸の量産を可能にした。繊維は「QMONOS」(クモの巣)と名付けた。関山社長は「自動車や医療などあらゆる産業で利用できる。石油に頼らないものづくりの大きな一歩だ」と話した。

朝日新聞

 

 

強さ柔らかさをあわせ持つ究極の素材が新たに開発され、量産技術が確立されました。
クモ糸は優れた機械特性[1]を持つものの、クモは飼育困難なため、量産は不可能だと考えられていました。21世紀に入り分子生物学が発展すると、バイオテクノロジーの手法を用いたクモ糸の生産研究が、日本の他、アメリカ・中国・ドイツなど世界的に加熱。ユニークなアイディアが続々と報告されていました[2],[3]。クモではなく、培養しやすい微生物など、別の生き物で作ればいいじゃん、という寸法です。

しかし、クモの糸になる材料となる分子を作ることができても、それを糸に仕立て上げる紡績の過程などで、規模拡大に高い技術が要求されます。このため、微生物を使うにしても、安価な量産には困難がともないます。この課題を克服するためには、単なるアイディアだけで浮ついて終始することのない、ものづくりの地に足のついた確固な基盤が必要でした。

 

GREEN2013fibroin.png

クモの糸によく見られるくりかえし構造

日本発のベンチャー企業であるスパイバー(Spiber)株式会社は、従来たちはだかっていた不可能へ果敢に挑戦。世界最高レベルの繊維化技術を獲得して、常識を変える大量生産へのみちを拓きました。強度や伸縮性など品質管理も制御下に収めていると言います。

 

ぶつかっても歩行者にケガをさせない車
次世代医療を支える、生体適合素材
人間の身体を傷つけない宇宙服
やさしく守る、夢の繊維
クモの糸が、あらゆる世界を変えていく。
不可能だと思う? ‐ 私たちは、そう思わない。

スパイバー株式会社

いわく「世界一強い虫は?」と仲間と飲みながら話したのが事業のきっかけだったといいます。気づいたらクモの話に夢中になっていたそうです。

 

2013年の5月24日から5月28日まで六本木ヒルズウエストウォーク2階にて、人工クモ糸繊維で作られたドレスの展示が行われているとのことです。チャンスがあればぜひ見に行きたいものです。

 

参考文献

[1] “Spider silk as mechanical lifeline” Shigeyoshi Osaki Nature 1996 DOI: 10.1038/384419a0

[2] “Spider Silk: From Soluble Protein to Extraordinary Fiber.” Markus Heim et al. Angew. Chem. Int. Ed. 2009 Review DOI: 10.1002/anie.200803341

[3] “Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk ?bers with improved mechanical properties” Florence Teule et al. Proc. Natl. Acad. Sci. USA  2012 DOI: 10.1073/pnas.1109420109

 

参考ウェブサイト

スパイバー株式会社ウェブページ(http://www.spiber.jp/)

事業概要のイントロダクションムービー。必見の価値ありです。

 

 

Avatar photo

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. 医療用酸素と工業用酸素の違い
  2. 114番元素と116番元素の名称が間もなく決定!
  3. 牛糞からプラスチック原料 水素とベンゼン、北大が成功
  4. 産総研、バイオから環境まで応用可能な新しい質量分析技術の開発に成…
  5. 東京化成、1万8千品目のMSDS公開サービス
  6. 書いたのは機械。テキストの自動生成による初の学術文献が出版
  7. アルツハイマー病・ワクチン開発相次ぐ、副作用回避へ知恵絞る
  8. シイタケ由来成分に抗アレルギー効果を確認

注目情報

ピックアップ記事

  1. 化学者に役立つWord辞書
  2. ダイアモンドの双子:「神話」上の物質を手のひらに
  3. マテリアルズ・インフォマティクスの推進成功事例セミナー
  4. 研究室ですぐに使える 有機合成の定番レシピ
  5. 有機アジド(1):歴史と基本的な性質
  6. X線分析の基礎知識【X線の性質編】
  7. 密度汎関数法の基礎
  8. カセロネス鉱山
  9. 環状ビナフチルオリゴマーの大きさが円偏光の向きを変える
  10. 三原色発光するシリコン量子ドットフィルム―太陽光、高温、高湿への高い耐久性は表面構造が鍵―

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2013年5月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

リサイクル・アップサイクルが可能な植物由来の可分解性高分子の開発

第694回のスポットライトリサーチは、横浜国立大学大学院理工学府(跡部・信田研究室)卒業生の瀬古達矢…

第24回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP