[スポンサーリンク]

化学者のつぶやき

不安定化合物ヒドロシランをうまくつくる方法

[スポンサーリンク]

 

ヒドロシラン、特にトリメチルシラン(Me3SiH)、モノシラン(SiH4)は特異な臭気を有する無色の有毒気体です。加えて、自然発火性と爆発性を併せもつため、モノシランの使用においては爆発事故[1]が何度も起きており、その取り扱いには注意を要します。そのため、通常、防爆などの設備が整っていない研究室ではこれらを取り扱うことが困難です。

「じゃあ使わなければいいじゃん!」といったらそれまで。

取り扱い困難な化合物はあまり研究も進んでおらず、往々にして驚くべき性質が眠っているものものです(一概にはいえませんが)。まあ簡単にいえば研究者心をくすぐる”好敵手”なワケですね。

ではこれらをうまくつくる方法はないのか?

今回はこの「不安定ヒドロシラン類を実験室でうまくつくる方法」について、最近のベルリン工科大学大学のOestreichらの研究を紹介したいと思います。まずはヒドロシランの有機合成化学的な観点からみた有用性について簡単に説明しましょう。

 

ヒドロシランの有用性:ヒドロシリル化反応

2015-09-17_00-12-02

図1 ヒドロシリル化反応とその触媒

まずひとつはヒドロシリル化反応につかえるということ。ヒドロシリル化反応は、有機骨格にシリル基を導入する最も基本的な手法の一つです(図 1)。オレフィン、ケトン、イミンといった不飽和結合に対し、遷移金属触媒あるいはルイス酸存在下、ヒドロシランが付加反応を起こします。1956年のPt触媒(Speier触媒)を用いたオレフィンへのヒドロシリル化反応[1]を皮切りに、Pd[2]、Rh[3]、Ru[4]などの様々な遷移金属触媒を用いたもの、塩化アルミニウム[5]、トリス(ペンタフルオロフェニル)ボラン(B(C6F5)3) [6]といったルイス酸を用いたものが数多く報告されています。しかしながら、上述したようにヒドロシランは高い毒性や可燃性を有しており、特に低分子量のヒドロシランは常温で気体であるために、取り扱いが困難であることがこの反応の難点です。

 

では、Oestreichらがどのようにこの不安定なヒドロシラン類を合成したのか?みていきましょう。

 

取り扱い容易なトリメチルシラン前駆体1の開発

実は、低分子量のヒドロシラン類そのものを合成したわけではなくて、反応溶液中で簡単に発生させることができる「前駆体(等価体)」の開発を試みたのです。その結果、2013年に、液体で取り扱いの容易なMe3SiH前駆体1の開発に成功しています(図 2)[7]。この前駆体のデザインはB(C6F5)3を触媒としたヒドロシリル化反応がヒントとなっています。

すでに、嵩高いルイス酸であるB(C6F5)3がヒドロシランのケイ素–水素結合と相互作用し、水素がホウ素に配位した複合体2を形成する(I)ことが知られていました[8]。続いて2のシリル基が不飽和結合に付加し(II)、生成したカルボカチオンをヒドリドが捕捉することによってヒドロシリル化が進行します(III)。彼らはこの反応をもとに、Me3SiHの水素原子を「1,4-シクロヘキサジエニル基」で置き換えた1がMe3SiH前駆体として適用可能であると考えたのです。

すなわち、1,4-シクロヘキサジエニル基の4位の水素がホウ素に配位する(IV)ことで、シリルアレニウムイオン3が生成します(V)。続く、3の芳香族化によって、ベンゼンが配位したシリリウムイオン4が形成されます。得られた4に対して、ホウ素上のヒドリドが付加することでMe3SiHが生成すると同時にB(C6F5)3が再生する(VI)と考えました。

実際に、合成した1を触媒量のB(C6F5)3存在下オレフィンと反応させたところヒドロシリル化反応が進行し、Me3SiHを反応溶液中で容易に発生していることを確認しています。また後に、1とB(C6F5)3を用いたケトンおよびイミンのヒドロシリル化も報告しています[9]

2015-09-17_00-44-23

図2 Me3SiH前駆体1とその反応機構

 

安定なモノシラン前駆体5、6の開発およびヒドロシリル化反応への応用

さらにモノシラン(SiH4)の反応系中での発生法に着手したところ、ごく最近、SiH4前駆体5および6を合成し、これを用いたヒドロシリル化反応の開発に成功しました[10]

彼らはまずMe3SiH前駆体1を参考に、SiH4の水素原子を2カ所あるいは3カ所1,4-シクロヘキサジエニル基で置き換えた、SiH4前駆体5および6の合成を行いました(図3)。5および6は、2,5-シクロヘキサジエニルリチウムをトリクロロシランもしくはジクロロジエトキシシランへ求核置換させることによって1段階あるいは2段階で合成し、再結晶により単離することができました。合成した5および6触媒量のB(C6F5)3を作用させることで7とSiH4が生成していることを1H NMR測定によって確認でき、SiH4の前駆体として働くことがわかりました。

2015-09-17_00-46-49

続いて彼らは、5を用いて各種オレフィンに対するヒドロシリル化反応を行いました(図4a)。スチレン誘導体及び環状、鎖状オレフィンに対して反応は進行し、基質の嵩高さによって2回から4回ヒドロシリル化が進行した生成物が得られています。また、アルキンである3-ヘキシンに対してのヒドロシリル化は、トランス付加で進行しました。さらに1,4-シクロヘキサジエニル骨格は、ケイ素–水素結合の保護基として用いることが可能です。また、5と白金触媒を用いた1-オクテンのヒドロシリル化、続くB(C6F5)3による1,4-シクロヘキサジエニル基の脱保護によって、モノアルキルシラン8を合成しています(図 4b)。

2015-09-17_00-47-37

図5 モノシラン前駆体を用いたヒドロシリル化反応

 

このように、低分子量ヒドロシラン類を簡便に発生させることのできる「前駆体」を開発し、SiH4を用いたオレフィンやアルキンのヒドロシリル化反応へと展開しました。単純な構造ではあるものの、爆発性を有するため危険で取り扱いが困難であったSiH4を、簡便に安全に取り扱うことを可能とした本論文の意義は極めて大きいといえます。今後これらのヒドロシランを用いた研究が発展することを期待したいと思います。

 

参考文献

  1. (a) Chen, R. J.; Tsai, Y. H.; Chen, K. S.; Pan, R. H.; Hu, C. S.; Shen, C. C.; Kuan, M. C.; Lee, C. Y.; Wu, C. C. Process Saf. Prog. 2006, 25, 237. DOI: 10.1002/prs.10136 (b) Chang, Y. Y.; Peng, J. D.; Wu, C. H.; Tsaur, C. C.; Shen, C. C.; Tsai, Y. H.; Chen, R. J. Process Saf. Prog. 2007. 26, 155. DOI: 10.1002/prs.10194
  2. (a) Speier, J. L.; Webster, J. A.; Bernes, G. H. J. Am. Chem. Soc. 1957, 79, 974. DOI: 10.1021/ja01561a054  (b) Lewis, L. N.;Sy, K. G.; Bryant, G. L.; Donahue, P. E. Organometallics 1991, 10, 3750. DOI: 10.1021/om00056a055
  3. Yoshida, J.; Tamao, K.; Takahashi, M.; Kumada, M. Tetrahedron Lett. 1978, 19, 2161. DOI: 10.1016/S0040-4039(01)86834-9
  4. (a) Ojima, I.; Kumagai, M. J.  Organomet. Chem. 1974, 66, C14. DOI: 10.1016/S0022-328X(00)93873-7 (b) Dickers, H. M.; Haszeldine, R. N.; Mather, A. P.; Parish, R. V. J. Organomet. Chem. 1978, 161, 91. DOI: 10.1016/S0022-328X(00)80914-6
  5. Esteruelas, M. A.; Herrero, J.; Oro, L. A. Organometallics 1993, 12, 2377. DOI: 10.1021/om00030a057
  6. Oertle, K.; Wetter, H. Tetrahedron Lett. 1985, 26, 5511. DOI: 10.1016/S0040-4039(01)80873-X
  7. Simonneau, A.; 
 Oestreich, M. Angew. Chem., Int. Ed. 2013, 52, 11905. DOI: 10.1002/anie.201305584
  8. (a) Rubin, M.; Schwier, T.; Gevorgyan, V. J. Org. Chem. 2002, 67, 1936. DOI: 10.1021/jo016279z (b) Rendler, S.; Oestreuch, M. Angew. Chem., Int. Ed. 2008, 47, 5997. DOI: 10.1002/anie.200801675 (c) Houghton, A. Y.; Hurmalainen, J.; Mansikkamäki, A.; Piers, W. E.; Tuononen, H. M.
 Nature Chem. 2014, 6, 983. DOI: 10.1038/nchem.2063
  9. Keess, S.; Simonneau, A.; Oestreich, M. Organometallics 2015, 34, 790. DOI: 10.1021/om501284a
  10. Simonneau, A.; Oestreich, M.;Nature Chem. 2015, ASAP. DOI: 10.1038/nchem.2329

 

関連書籍

 

外部リンク

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 分子機械を組み合わせてアメーバ型分子ロボットを作製
  2. ワイリー・サイエンスカフェ開設記念クイズ・キャンペーン
  3. 結晶構造データは論文か?CSD Communicationsの公…
  4. ものごとを前に進める集中仕事術「ポモドーロ・テクニック」
  5. KISTECおもちゃレスキュー こども救急隊・こども鑑識隊
  6. スルホニルアミノ酸を含むペプチドフォルダマーの創製
  7. 「脱芳香族的二重官能基修飾化反応の研究」ーイリノイ大学David…
  8. ポルフィリン中心金属の違いが薄膜構造を変える~配位結合を利用した…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. タンパク質立体構造をPDBjViewerで表示しよう
  2. 次世代型合金触媒の電解水素化メカニズムを解明!アルキンからアルケンへの選択的水素化法
  3. アイルランド・クライゼン転位 Ireland-Claisen Rearrangement
  4. Open Babel を使ってみよう~ケモインフォマティクス入門~
  5. CO酸化触媒として機能する、“無保護”合金型ナノ粒子を担持した基板を、ワンプロセスで調製する手法を開発
  6. ラリー・オーヴァーマン Larry E. Overman
  7. “呼吸するセラミックス” を使った酸素ガス分離・製造
  8. ヒスチジン近傍選択的なタンパク質主鎖修飾法
  9. トランジスタの三本足を使ってsp2骨格の分子模型をつくる
  10. 挑戦を続ける日本のエネルギー企業

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年9月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

ニキビ治療薬の成分が発がん性物質に変化?検査会社が注意喚起

2024年3月7日、ブルームバーグ・ニュース及び Yahoo! ニュースに以下の…

ガラスのように透明で曲げられるエアロゲル ―高性能透明断熱材として期待―

第603回のスポットライトリサーチは、ティエムファクトリ株式会社の上岡 良太(うえおか りょうた)さ…

有機合成化学協会誌2024年3月号:遠隔位電子チューニング・含窒素芳香族化合物・ジベンゾクリセン・ロタキサン・近赤外光材料

有機合成化学協会が発行する有機合成化学協会誌、2024年3月号がオンライン公開されています。…

日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part3

日本化学会年会の付設展示会に出展する企業とのコラボです。第一弾・第二弾につづいて…

ペロブスカイト太陽電池の学理と技術: カーボンニュートラルを担う国産グリーンテクノロジー (CSJカレントレビュー: 48)

(さらに…)…

日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part2

前回の第一弾に続いて第二弾。日本化学会年会の付設展示会に出展する企業との…

CIPイノベーション共創プログラム「世界に躍進する創薬・バイオベンチャーの新たな戦略」

日本化学会第104春季年会(2024)で開催されるシンポジウムの一つに、CIPセッション「世界に躍進…

日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part1

今年も始まりました日本化学会春季年会。対面で復活して2年めですね。今年は…

マテリアルズ・インフォマティクスの推進成功事例 -なぜあの企業は最短でMI推進を成功させたのか?-

開催日:2024/03/21 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

分子のねじれの強さを調節して分子運動を制御する

第602回のスポットライトリサーチは、東京大学大学院理学系研究科 塩谷研究室の中島 朋紀(なかじま …

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP