[スポンサーリンク]

化学者のつぶやき

求電子剤側で不斉を制御したアミノメチル化反応

[スポンサーリンク]

イミニウムイオンの対アニオンで不斉を制御するアミノメチル化反応が報告された。求核剤側で不斉を制御する従来法とは異なり、新しい求核剤を用いることができる。

アミノメチル化とその不斉制御法

天然物や医薬品に頻出する「アミノメチル部位」を、分子に効率よく導入する手法は合成化学的に有用である。これまで金属触媒反応やラジカル反応によるアミノメチル化が多数報告されている[1]。しかし、触媒的不斉アミノメチル化の例は限定的である。代表例としてプロリン触媒を用いたケトンとイミニウムイオンのMannich型不斉アミノメチル化がある(図1A[2a]。ケトンとプロリンから生成したキラルなエナミン(求核剤)が、系中で調製したイミニウムイオン(求電子剤)に求核攻撃を行うことで不斉を発現している。また、他のキラルアミン触媒存在下、求核剤にアルデヒド[2b]1,3–ジケトン[2c]、を用いる同様な不斉アミノメチル化反応も報告されている(図1B)。これらの例は、全てキラルな求核剤が不斉を誘導するものであり、その結果、エナミンを生成し得るカルボニル化合物に限られるといった課題がある。

一方で、中山大学のHu教授らはキラルリン酸を触媒とした、ジアゾ化合物とイミン、アルコールもしくはカーバマートとの不斉3成分連結反応を開発した(1B)[3]。従来法とは異なる求電子剤側による不斉制御であり、新しい求核剤を用いることができたが、求電子剤は水素結合を作れる安定なイミンに限られた。また、不斉制御には対アニオンと求核剤の水素結合を必要としないAsymmetric Counter–Anion–Directed Catalysis (ACDC)があるが、アミノメチル化へと展開した例はなかった[4]

図1.(A) 従来の主な不斉アミノメチル化 (B) キラルリン酸と水素結合を介したイミンによる不斉誘導

“Asymmetric Counter–Anion–Directed Aminomethylation: Synthesis of Chiral β–Amino Acids via Trapping of an Enol Intermediate”

Kang, Z.; Wang, Y.; Zhang, D.; Wu, R.; Xu, X.; Hu, W. J. Am. Chem. Soc. 2019, 141, 1473. DOI: 10.1021/jacs.8b12832

論文著者の紹介

研究者:Wenhao Hu

研究者の経歴:
1983-1987 B.S. Sichuan University
1987-1990 M.S. Chengdu Institute of Organic Chemistry (CIOC)
1995-1998 Ph.D. Hong Kong Polytechnic University (Prof. Albert S. C. Chan)
1998-2001 Posdoc, University of Arizona (Prof. Michael P. Doyle)
2002-2006 Medicinal Chemist (Genesoft), Process Chemist (Bristol–Myers)
2006-2016 Professor, Department of Chemistry, East China Normal University
2016-           Professor, School of Pharmaceutical Sciences, Sun Yat-Sen University

研究内容:活性中間体を捕捉する多成分連結反応

論文の概要

著者らは、ACDCによるイミニウムイオンを用いた不斉アミノメチル化を達成した(2A)。初めにキラルブレンステッド酸触媒の検討を行った。前反応同様に、キラルリン酸を用いたが、エナンチオ選択性は向上しなかった。そこで、Lambertらが報告したシクロペンタジエニル骨格をもつブレンステッド酸(5d, 5e)(5)を用いたところ、高いエナンチオ選択性を示すことを見出した。本反応は基質適用範囲が広くαジアゾエステルには様々な置換基をもつ芳香環(4b~4f)やスチリル基(4g)を用いることができる。アルコールもベンジルアルコール類以外も脂肪族アルコール(4h~4l)や、ヘテロ環のついたアルコール(4m)も適用できる。アミンは芳香環上の置換基が変化しても(4n~4p)問題なく反応が進行する(2B)。また、4αヒドロキシβ­­­アミノ酸やαヒドロキシβラクタムへと誘導可能である。著者らは、実験結果およびDFT計算結果から推定される触媒サイクルを提示している(2C)。まず、1Pdによりカルベノイドが発生する。にアルコールが求核攻撃、続くPdの脱離およびプロトン授受によりエノールが生成する。一方で、35dは容易にメタノールの脱離を伴ってイオン対を形成する。こののイミニウムイオンとエノールMannich型反応により目的の4が生成する。著者らは、DFT計算によりこのエナンチオ選択性の発現機構を証明しているが詳しくは本論文を参照されたい。

図2. (A) キラルリン酸検討 (B) 基質適用範囲 (C) 推定反応機構

 

以上、キラルブレンステッド酸5dを用いた、高エナンチオ選択的アミノメチル化が報告された。本不斉アミノメチル化の創薬や天然物合成研究への利用が期待される。

参考文献

  1. Selected examples see: (a) Seayad, A.; Ahmed, M.; Klein, H.; Jackstell, R.; Gross, T.; Beller, M. Science 2002, 297, 1676. DOI: 1126/science.1074801(b) Remeur, C.; Kelly, C. B.; Patel, N. R.; Molander, G. A. ACS Catal. 2017, 7, 6065. DOI: 10.1021/acscatal.7b01973 ほぼ同時期に不斉反応ではないが、類似反応が報告された(c) Zhang , Y.; Yu, B.; Gao, B.; Zhang, T.; Huang, H. Org. Lett. 2019, 21, 535. DOI:10.1021/acs.orglett.8b03847(d) Fujii, S.; Konishi, T.; Matsumoto, Y.; Yamaoka, Y.; Takasu, K.; Yamada, K. J. Org. Chem. 2014, 79, 8128. DOI: 10.1021/jo501332j
  2. (a) Ibrahem, I.; Casas, J.; Cordova, A. Angew. Chem., Int. Ed. 2004, 43, 6528. DOI: 10.1002/anie.200460678(b) Chi, Y.; Gellman, S. H. J. Am. Chem. Soc. 2006, 128, 6804. DOI: 10.1021/ja061731n(c) You, Y.; Zhang, L.; Cui, L.; Mi, X.; Luo, S. Angew. Chem., Int. Ed. 2017, 56, 13814. DOI: 10.1002/anie.201707005
  3. Selected examples see (a) Hu, W. H.; Xu, X. F.; Zhou, J.; Liu, W. J.; Huang, H. X.; Hu, J.; Yang, L. P.; Gong, L. Z. J. Am. Chem. Soc.2008, 130, 7782. DOI: 10.1021/ja801755z (b) Jiang, J.; Xu, H.-D.; Xi, J.-B.; Ren, B.-Y.; Lv, F.-P.; Guo, X.; Jiang, L.-Q.; Zhang, Z.-Y.: Hu, W. H. J. Am. Chem. Soc. 2011, 133, 8428. DOI: 10.1021/ja201589k
  4. (a) Phipps, R.; Hamilton, G.; Toste, F. D. Nat. Chem.2012, 4, 603. DOI: 10.1038/nchem.1405(b) Mahlau, M.; List, B. Angew. Chem., Int. Ed. 2013,52, 518 DOI: 10.1002/anie.201205343(c) Brak, K.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2013, 52, 534. DOI: 10.1002/anie.201205449
  5. Gheewala, C. D.; Collins, B. E.; Lambert. Science 2016, 351, 961. DOI: 1126/science.aad0591
The following two tabs change content below.
山口 研究室
早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 酸で活性化された超原子価ヨウ素
  2. 植物の受精効率を高める糖鎖「アモール」の発見
  3. ニセ試薬のサプライチェーン
  4. 【追悼企画】不斉酸化反応のフロンティアー香月 勗
  5. 有機分子触媒ーChemical Times特集より
  6. 直接クプラート化によるフルオロアルキル銅錯体の形成と応用
  7. コバルト触媒でアリル位C(sp3)–H結合を切断し二酸化炭素を組…
  8. 光学活性有機ホウ素化合物のカップリング反応

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 論文の自己剽窃は推奨されるべき?
  2. ハンチュ ジヒドロピリジン合成  Hantzsch Dihydropyridine Synthesis
  3. 田辺製薬と三菱ウェルファーマが10月1日に合併へ‐新社名は「田辺三菱製薬」
  4. 独メルク、電子工業用薬品事業をBASFに売却
  5. ショウリョウバッタが吐くアレについて
  6. 化学探偵Mr.キュリー7
  7. 酢酸鉄(II):Acetic Acid Iron(II) Salt
  8. 宮浦・石山ホウ素化反応 Miyaura-Ishiyama Borylation
  9. カガン・モランダーカップリング Kagan-Molander Coupling
  10. 黒田 玲子 Reiko Kuroda

関連商品

注目情報

注目情報

最新記事

ヒドロゲルの新たな力学強度・温度応答性制御法

第230回のスポットライトリサーチは、東京農工大学大学院工学府(村岡研究室)・石田敦也さんにお願い致…

光誘導アシルラジカルのミニスキ型ヒドロキシアルキル化反応

可視光照射条件下でのアジン類のミニスキ型ヒドロキシアルキル化反応が開発された。官能基許容性が高いため…

イオン交換が分子間電荷移動を駆動する協奏的現象の発見

第229回のスポットライトリサーチは、東京大学大学院 新領域創成科学研究科(竹谷・岡本研究室)・山下…

化学産業における規格の意義

普段、実験で使う溶媒には、試薬特級や試薬一級といった”グレード”が記載されている。一般的には、特級の…

特許資産規模ランキング2019、トップ3は富士フイルム、三菱ケミカル、住友化学

株式会社パテント・リザルトは、独自に分類した「化学」業界の企業を対象に、各社が保有する特許資産を質と…

TQ: TriQuinoline

第228回のスポットライトリサーチは、足立 慎弥さんにお願い致しました。シンプルながらこれま…

Chem-Station Twitter

PAGE TOP