[スポンサーリンク]

化学者のつぶやき

求電子剤側で不斉を制御したアミノメチル化反応

[スポンサーリンク]

イミニウムイオンの対アニオンで不斉を制御するアミノメチル化反応が報告された。求核剤側で不斉を制御する従来法とは異なり、新しい求核剤を用いることができる。

アミノメチル化とその不斉制御法

天然物や医薬品に頻出する「アミノメチル部位」を、分子に効率よく導入する手法は合成化学的に有用である。これまで金属触媒反応やラジカル反応によるアミノメチル化が多数報告されている[1]。しかし、触媒的不斉アミノメチル化の例は限定的である。代表例としてプロリン触媒を用いたケトンとイミニウムイオンのMannich型不斉アミノメチル化がある(図1A[2a]。ケトンとプロリンから生成したキラルなエナミン(求核剤)が、系中で調製したイミニウムイオン(求電子剤)に求核攻撃を行うことで不斉を発現している。また、他のキラルアミン触媒存在下、求核剤にアルデヒド[2b]1,3–ジケトン[2c]、を用いる同様な不斉アミノメチル化反応も報告されている(図1B)。これらの例は、全てキラルな求核剤が不斉を誘導するものであり、その結果、エナミンを生成し得るカルボニル化合物に限られるといった課題がある。

一方で、中山大学のHu教授らはキラルリン酸を触媒とした、ジアゾ化合物とイミン、アルコールもしくはカーバマートとの不斉3成分連結反応を開発した(1B)[3]。従来法とは異なる求電子剤側による不斉制御であり、新しい求核剤を用いることができたが、求電子剤は水素結合を作れる安定なイミンに限られた。また、不斉制御には対アニオンと求核剤の水素結合を必要としないAsymmetric Counter–Anion–Directed Catalysis (ACDC)があるが、アミノメチル化へと展開した例はなかった[4]

図1.(A) 従来の主な不斉アミノメチル化 (B) キラルリン酸と水素結合を介したイミンによる不斉誘導

“Asymmetric Counter–Anion–Directed Aminomethylation: Synthesis of Chiral β–Amino Acids via Trapping of an Enol Intermediate”

Kang, Z.; Wang, Y.; Zhang, D.; Wu, R.; Xu, X.; Hu, W. J. Am. Chem. Soc. 2019, 141, 1473. DOI: 10.1021/jacs.8b12832

論文著者の紹介

研究者:Wenhao Hu

研究者の経歴:
1983-1987 B.S. Sichuan University
1987-1990 M.S. Chengdu Institute of Organic Chemistry (CIOC)
1995-1998 Ph.D. Hong Kong Polytechnic University (Prof. Albert S. C. Chan)
1998-2001 Posdoc, University of Arizona (Prof. Michael P. Doyle)
2002-2006 Medicinal Chemist (Genesoft), Process Chemist (Bristol–Myers)
2006-2016 Professor, Department of Chemistry, East China Normal University
2016-           Professor, School of Pharmaceutical Sciences, Sun Yat-Sen University

研究内容:活性中間体を捕捉する多成分連結反応

論文の概要

著者らは、ACDCによるイミニウムイオンを用いた不斉アミノメチル化を達成した(2A)。初めにキラルブレンステッド酸触媒の検討を行った。前反応同様に、キラルリン酸を用いたが、エナンチオ選択性は向上しなかった。そこで、Lambertらが報告したシクロペンタジエニル骨格をもつブレンステッド酸(5d, 5e)(5)を用いたところ、高いエナンチオ選択性を示すことを見出した。本反応は基質適用範囲が広くαジアゾエステルには様々な置換基をもつ芳香環(4b~4f)やスチリル基(4g)を用いることができる。アルコールもベンジルアルコール類以外も脂肪族アルコール(4h~4l)や、ヘテロ環のついたアルコール(4m)も適用できる。アミンは芳香環上の置換基が変化しても(4n~4p)問題なく反応が進行する(2B)。また、4αヒドロキシβ­­­アミノ酸やαヒドロキシβラクタムへと誘導可能である。著者らは、実験結果およびDFT計算結果から推定される触媒サイクルを提示している(2C)。まず、1Pdによりカルベノイドが発生する。にアルコールが求核攻撃、続くPdの脱離およびプロトン授受によりエノールが生成する。一方で、35dは容易にメタノールの脱離を伴ってイオン対を形成する。こののイミニウムイオンとエノールMannich型反応により目的の4が生成する。著者らは、DFT計算によりこのエナンチオ選択性の発現機構を証明しているが詳しくは本論文を参照されたい。

図2. (A) キラルリン酸検討 (B) 基質適用範囲 (C) 推定反応機構

 

以上、キラルブレンステッド酸5dを用いた、高エナンチオ選択的アミノメチル化が報告された。本不斉アミノメチル化の創薬や天然物合成研究への利用が期待される。

参考文献

  1. Selected examples see: (a) Seayad, A.; Ahmed, M.; Klein, H.; Jackstell, R.; Gross, T.; Beller, M. Science 2002, 297, 1676. DOI: 1126/science.1074801(b) Remeur, C.; Kelly, C. B.; Patel, N. R.; Molander, G. A. ACS Catal. 2017, 7, 6065. DOI: 10.1021/acscatal.7b01973 ほぼ同時期に不斉反応ではないが、類似反応が報告された(c) Zhang , Y.; Yu, B.; Gao, B.; Zhang, T.; Huang, H. Org. Lett. 2019, 21, 535. DOI:10.1021/acs.orglett.8b03847(d) Fujii, S.; Konishi, T.; Matsumoto, Y.; Yamaoka, Y.; Takasu, K.; Yamada, K. J. Org. Chem. 2014, 79, 8128. DOI: 10.1021/jo501332j
  2. (a) Ibrahem, I.; Casas, J.; Cordova, A. Angew. Chem., Int. Ed. 2004, 43, 6528. DOI: 10.1002/anie.200460678(b) Chi, Y.; Gellman, S. H. J. Am. Chem. Soc. 2006, 128, 6804. DOI: 10.1021/ja061731n(c) You, Y.; Zhang, L.; Cui, L.; Mi, X.; Luo, S. Angew. Chem., Int. Ed. 2017, 56, 13814. DOI: 10.1002/anie.201707005
  3. Selected examples see (a) Hu, W. H.; Xu, X. F.; Zhou, J.; Liu, W. J.; Huang, H. X.; Hu, J.; Yang, L. P.; Gong, L. Z. J. Am. Chem. Soc.2008, 130, 7782. DOI: 10.1021/ja801755z (b) Jiang, J.; Xu, H.-D.; Xi, J.-B.; Ren, B.-Y.; Lv, F.-P.; Guo, X.; Jiang, L.-Q.; Zhang, Z.-Y.: Hu, W. H. J. Am. Chem. Soc. 2011, 133, 8428. DOI: 10.1021/ja201589k
  4. (a) Phipps, R.; Hamilton, G.; Toste, F. D. Nat. Chem.2012, 4, 603. DOI: 10.1038/nchem.1405(b) Mahlau, M.; List, B. Angew. Chem., Int. Ed. 2013,52, 518 DOI: 10.1002/anie.201205343(c) Brak, K.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2013, 52, 534. DOI: 10.1002/anie.201205449
  5. Gheewala, C. D.; Collins, B. E.; Lambert. Science 2016, 351, 961. DOI: 1126/science.aad0591

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 【Q&Aシリーズ❸ 技術者・事業担当者向け】 マイクロ…
  2. 第10回次世代を担う有機化学シンポジウムに参加してきました
  3. 錯体と有機化合物、触媒はどっち?
  4. 簡単に扱えるボロン酸誘導体の開発 ~小さな構造変化が大きな違いを…
  5. 第3の生命鎖、糖鎖の意味を解明する!【ケムステ×Hey!Labo…
  6. 反応開発はいくつ検討すればいいのか? / On the Topi…
  7. Carl Boschの人生 その10
  8. カルロス・シャーガスのはなし ーシャーガス病の発見者ー

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 全薬工業とゼファーマ、外用抗真菌薬「ラノコナゾール」配合の水虫治療薬を発売
  2. 「もしかして転職した方がいい?」と思ったらまずやるべき3つのこと
  3. 芳香族ニトロ化合物のクロスカップリング反応
  4. 分子のねじれの強さを調節して分子運動を制御する
  5. ステファン・ヘル Stefan W. Hell
  6. 【食品・飲料業界の方向け】 マイクロ波がもたらすプロセス効率化と脱炭素化 低温焙煎・抽出・乾燥・凍結乾燥・噴霧乾燥・ケミカルリサイクル
  7. 低い電位で多電子移動を引き起こす「ドミノレドックス反応」とは!?
  8. 四国化成ホールディングスってどんな会社?
  9. 化学者のためのエレクトロニクス入門④ ~プリント基板業界で活躍する化学メーカー編~
  10. 第10回ケムステVシンポ「天然物フィロソフィ」を開催します

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年3月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)

概要分子が溶けた溶液に光を通したとき,そこから出てくる光の強さは,入る前の強さと比べて小さくなる…

活性酸素種はどれでしょう? 〜三重項酸素と一重項酸素、そのほか〜

第109回薬剤師国家試験 (2024年実施) にて、以下のような問題が出題されま…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP