[スポンサーリンク]

化学者のつぶやき

求電子剤側で不斉を制御したアミノメチル化反応

[スポンサーリンク]

イミニウムイオンの対アニオンで不斉を制御するアミノメチル化反応が報告された。求核剤側で不斉を制御する従来法とは異なり、新しい求核剤を用いることができる。

アミノメチル化とその不斉制御法

天然物や医薬品に頻出する「アミノメチル部位」を、分子に効率よく導入する手法は合成化学的に有用である。これまで金属触媒反応やラジカル反応によるアミノメチル化が多数報告されている[1]。しかし、触媒的不斉アミノメチル化の例は限定的である。代表例としてプロリン触媒を用いたケトンとイミニウムイオンのMannich型不斉アミノメチル化がある(図1A[2a]。ケトンとプロリンから生成したキラルなエナミン(求核剤)が、系中で調製したイミニウムイオン(求電子剤)に求核攻撃を行うことで不斉を発現している。また、他のキラルアミン触媒存在下、求核剤にアルデヒド[2b]1,3–ジケトン[2c]、を用いる同様な不斉アミノメチル化反応も報告されている(図1B)。これらの例は、全てキラルな求核剤が不斉を誘導するものであり、その結果、エナミンを生成し得るカルボニル化合物に限られるといった課題がある。

一方で、中山大学のHu教授らはキラルリン酸を触媒とした、ジアゾ化合物とイミン、アルコールもしくはカーバマートとの不斉3成分連結反応を開発した(1B)[3]。従来法とは異なる求電子剤側による不斉制御であり、新しい求核剤を用いることができたが、求電子剤は水素結合を作れる安定なイミンに限られた。また、不斉制御には対アニオンと求核剤の水素結合を必要としないAsymmetric Counter–Anion–Directed Catalysis (ACDC)があるが、アミノメチル化へと展開した例はなかった[4]

図1.(A) 従来の主な不斉アミノメチル化 (B) キラルリン酸と水素結合を介したイミンによる不斉誘導

“Asymmetric Counter–Anion–Directed Aminomethylation: Synthesis of Chiral β–Amino Acids via Trapping of an Enol Intermediate”

Kang, Z.; Wang, Y.; Zhang, D.; Wu, R.; Xu, X.; Hu, W. J. Am. Chem. Soc. 2019, 141, 1473. DOI: 10.1021/jacs.8b12832

論文著者の紹介

研究者:Wenhao Hu

研究者の経歴:
1983-1987 B.S. Sichuan University
1987-1990 M.S. Chengdu Institute of Organic Chemistry (CIOC)
1995-1998 Ph.D. Hong Kong Polytechnic University (Prof. Albert S. C. Chan)
1998-2001 Posdoc, University of Arizona (Prof. Michael P. Doyle)
2002-2006 Medicinal Chemist (Genesoft), Process Chemist (Bristol–Myers)
2006-2016 Professor, Department of Chemistry, East China Normal University
2016-           Professor, School of Pharmaceutical Sciences, Sun Yat-Sen University

研究内容:活性中間体を捕捉する多成分連結反応

論文の概要

著者らは、ACDCによるイミニウムイオンを用いた不斉アミノメチル化を達成した(2A)。初めにキラルブレンステッド酸触媒の検討を行った。前反応同様に、キラルリン酸を用いたが、エナンチオ選択性は向上しなかった。そこで、Lambertらが報告したシクロペンタジエニル骨格をもつブレンステッド酸(5d, 5e)(5)を用いたところ、高いエナンチオ選択性を示すことを見出した。本反応は基質適用範囲が広くαジアゾエステルには様々な置換基をもつ芳香環(4b~4f)やスチリル基(4g)を用いることができる。アルコールもベンジルアルコール類以外も脂肪族アルコール(4h~4l)や、ヘテロ環のついたアルコール(4m)も適用できる。アミンは芳香環上の置換基が変化しても(4n~4p)問題なく反応が進行する(2B)。また、4αヒドロキシβ­­­アミノ酸やαヒドロキシβラクタムへと誘導可能である。著者らは、実験結果およびDFT計算結果から推定される触媒サイクルを提示している(2C)。まず、1Pdによりカルベノイドが発生する。にアルコールが求核攻撃、続くPdの脱離およびプロトン授受によりエノールが生成する。一方で、35dは容易にメタノールの脱離を伴ってイオン対を形成する。こののイミニウムイオンとエノールMannich型反応により目的の4が生成する。著者らは、DFT計算によりこのエナンチオ選択性の発現機構を証明しているが詳しくは本論文を参照されたい。

図2. (A) キラルリン酸検討 (B) 基質適用範囲 (C) 推定反応機構

 

以上、キラルブレンステッド酸5dを用いた、高エナンチオ選択的アミノメチル化が報告された。本不斉アミノメチル化の創薬や天然物合成研究への利用が期待される。

参考文献

  1. Selected examples see: (a) Seayad, A.; Ahmed, M.; Klein, H.; Jackstell, R.; Gross, T.; Beller, M. Science 2002, 297, 1676. DOI: 1126/science.1074801(b) Remeur, C.; Kelly, C. B.; Patel, N. R.; Molander, G. A. ACS Catal. 2017, 7, 6065. DOI: 10.1021/acscatal.7b01973 ほぼ同時期に不斉反応ではないが、類似反応が報告された(c) Zhang , Y.; Yu, B.; Gao, B.; Zhang, T.; Huang, H. Org. Lett. 2019, 21, 535. DOI:10.1021/acs.orglett.8b03847(d) Fujii, S.; Konishi, T.; Matsumoto, Y.; Yamaoka, Y.; Takasu, K.; Yamada, K. J. Org. Chem. 2014, 79, 8128. DOI: 10.1021/jo501332j
  2. (a) Ibrahem, I.; Casas, J.; Cordova, A. Angew. Chem., Int. Ed. 2004, 43, 6528. DOI: 10.1002/anie.200460678(b) Chi, Y.; Gellman, S. H. J. Am. Chem. Soc. 2006, 128, 6804. DOI: 10.1021/ja061731n(c) You, Y.; Zhang, L.; Cui, L.; Mi, X.; Luo, S. Angew. Chem., Int. Ed. 2017, 56, 13814. DOI: 10.1002/anie.201707005
  3. Selected examples see (a) Hu, W. H.; Xu, X. F.; Zhou, J.; Liu, W. J.; Huang, H. X.; Hu, J.; Yang, L. P.; Gong, L. Z. J. Am. Chem. Soc.2008, 130, 7782. DOI: 10.1021/ja801755z (b) Jiang, J.; Xu, H.-D.; Xi, J.-B.; Ren, B.-Y.; Lv, F.-P.; Guo, X.; Jiang, L.-Q.; Zhang, Z.-Y.: Hu, W. H. J. Am. Chem. Soc. 2011, 133, 8428. DOI: 10.1021/ja201589k
  4. (a) Phipps, R.; Hamilton, G.; Toste, F. D. Nat. Chem.2012, 4, 603. DOI: 10.1038/nchem.1405(b) Mahlau, M.; List, B. Angew. Chem., Int. Ed. 2013,52, 518 DOI: 10.1002/anie.201205343(c) Brak, K.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2013, 52, 534. DOI: 10.1002/anie.201205449
  5. Gheewala, C. D.; Collins, B. E.; Lambert. Science 2016, 351, 961. DOI: 1126/science.aad0591
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. C-H活性化触媒を用いる(+)-リゾスペルミン酸の収束的合成
  2. 非常に小さな反転障壁を示す有機リン化合物の合成
  3. 有機分子触媒ーChemical Times特集より
  4. 葉緑素だけが集積したナノシート
  5. 産官学の深耕ー社会への発信+若い力への後押しー第1回CSJ化学フ…
  6. 未来の科学者を育てる政策~スーパーサイエンスハイスクール(SSH…
  7. 会社でも英語を重視?―さて詮なきことか善きことか
  8. ヘテロベンザイン

注目情報

ピックアップ記事

  1. カチオン性三核Pd触媒でC–I結合選択的にカップリングする
  2. 【Vol.1】研究室ってどんな設備があるの? 〜ロータリーエバポレーター〜
  3. 第19回「心に残る反応・分子を見つけたい」ー京都大学 依光英樹准教授
  4. 有機ラジカルポリマー合成に有用なTEMPO型フリーラジカル
  5. 犬の「肥満治療薬」を認可=米食品医薬品局
  6. アレーン類の直接的クロスカップリング
  7. 1-トリフルオロメチル-3,3-ジメチル-1,2-ベンゾヨードキソール:1-Trifluoromethyl-3,3-dimethyl-1,2-benziodoxole
  8. 第6回ICReDD国際シンポジウム開催のお知らせ
  9. 有機配位子による[3]カテナンの運動性の多状態制御
  10. カチオン中間体の反応に新展開をもたらす新規フロー反応装置の開発

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年3月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP