[スポンサーリンク]

化学者のつぶやき

求電子剤側で不斉を制御したアミノメチル化反応

[スポンサーリンク]

イミニウムイオンの対アニオンで不斉を制御するアミノメチル化反応が報告された。求核剤側で不斉を制御する従来法とは異なり、新しい求核剤を用いることができる。

アミノメチル化とその不斉制御法

天然物や医薬品に頻出する「アミノメチル部位」を、分子に効率よく導入する手法は合成化学的に有用である。これまで金属触媒反応やラジカル反応によるアミノメチル化が多数報告されている[1]。しかし、触媒的不斉アミノメチル化の例は限定的である。代表例としてプロリン触媒を用いたケトンとイミニウムイオンのMannich型不斉アミノメチル化がある(図1A[2a]。ケトンとプロリンから生成したキラルなエナミン(求核剤)が、系中で調製したイミニウムイオン(求電子剤)に求核攻撃を行うことで不斉を発現している。また、他のキラルアミン触媒存在下、求核剤にアルデヒド[2b]1,3–ジケトン[2c]、を用いる同様な不斉アミノメチル化反応も報告されている(図1B)。これらの例は、全てキラルな求核剤が不斉を誘導するものであり、その結果、エナミンを生成し得るカルボニル化合物に限られるといった課題がある。

一方で、中山大学のHu教授らはキラルリン酸を触媒とした、ジアゾ化合物とイミン、アルコールもしくはカーバマートとの不斉3成分連結反応を開発した(1B)[3]。従来法とは異なる求電子剤側による不斉制御であり、新しい求核剤を用いることができたが、求電子剤は水素結合を作れる安定なイミンに限られた。また、不斉制御には対アニオンと求核剤の水素結合を必要としないAsymmetric Counter–Anion–Directed Catalysis (ACDC)があるが、アミノメチル化へと展開した例はなかった[4]

図1.(A) 従来の主な不斉アミノメチル化 (B) キラルリン酸と水素結合を介したイミンによる不斉誘導

“Asymmetric Counter–Anion–Directed Aminomethylation: Synthesis of Chiral β–Amino Acids via Trapping of an Enol Intermediate”

Kang, Z.; Wang, Y.; Zhang, D.; Wu, R.; Xu, X.; Hu, W. J. Am. Chem. Soc. 2019, 141, 1473. DOI: 10.1021/jacs.8b12832

論文著者の紹介

研究者:Wenhao Hu

研究者の経歴:
1983-1987 B.S. Sichuan University
1987-1990 M.S. Chengdu Institute of Organic Chemistry (CIOC)
1995-1998 Ph.D. Hong Kong Polytechnic University (Prof. Albert S. C. Chan)
1998-2001 Posdoc, University of Arizona (Prof. Michael P. Doyle)
2002-2006 Medicinal Chemist (Genesoft), Process Chemist (Bristol–Myers)
2006-2016 Professor, Department of Chemistry, East China Normal University
2016-           Professor, School of Pharmaceutical Sciences, Sun Yat-Sen University

研究内容:活性中間体を捕捉する多成分連結反応

論文の概要

著者らは、ACDCによるイミニウムイオンを用いた不斉アミノメチル化を達成した(2A)。初めにキラルブレンステッド酸触媒の検討を行った。前反応同様に、キラルリン酸を用いたが、エナンチオ選択性は向上しなかった。そこで、Lambertらが報告したシクロペンタジエニル骨格をもつブレンステッド酸(5d, 5e)(5)を用いたところ、高いエナンチオ選択性を示すことを見出した。本反応は基質適用範囲が広くαジアゾエステルには様々な置換基をもつ芳香環(4b~4f)やスチリル基(4g)を用いることができる。アルコールもベンジルアルコール類以外も脂肪族アルコール(4h~4l)や、ヘテロ環のついたアルコール(4m)も適用できる。アミンは芳香環上の置換基が変化しても(4n~4p)問題なく反応が進行する(2B)。また、4αヒドロキシβ­­­アミノ酸やαヒドロキシβラクタムへと誘導可能である。著者らは、実験結果およびDFT計算結果から推定される触媒サイクルを提示している(2C)。まず、1Pdによりカルベノイドが発生する。にアルコールが求核攻撃、続くPdの脱離およびプロトン授受によりエノールが生成する。一方で、35dは容易にメタノールの脱離を伴ってイオン対を形成する。こののイミニウムイオンとエノールMannich型反応により目的の4が生成する。著者らは、DFT計算によりこのエナンチオ選択性の発現機構を証明しているが詳しくは本論文を参照されたい。

図2. (A) キラルリン酸検討 (B) 基質適用範囲 (C) 推定反応機構

 

以上、キラルブレンステッド酸5dを用いた、高エナンチオ選択的アミノメチル化が報告された。本不斉アミノメチル化の創薬や天然物合成研究への利用が期待される。

参考文献

  1. Selected examples see: (a) Seayad, A.; Ahmed, M.; Klein, H.; Jackstell, R.; Gross, T.; Beller, M. Science 2002, 297, 1676. DOI: 1126/science.1074801(b) Remeur, C.; Kelly, C. B.; Patel, N. R.; Molander, G. A. ACS Catal. 2017, 7, 6065. DOI: 10.1021/acscatal.7b01973 ほぼ同時期に不斉反応ではないが、類似反応が報告された(c) Zhang , Y.; Yu, B.; Gao, B.; Zhang, T.; Huang, H. Org. Lett. 2019, 21, 535. DOI:10.1021/acs.orglett.8b03847(d) Fujii, S.; Konishi, T.; Matsumoto, Y.; Yamaoka, Y.; Takasu, K.; Yamada, K. J. Org. Chem. 2014, 79, 8128. DOI: 10.1021/jo501332j
  2. (a) Ibrahem, I.; Casas, J.; Cordova, A. Angew. Chem., Int. Ed. 2004, 43, 6528. DOI: 10.1002/anie.200460678(b) Chi, Y.; Gellman, S. H. J. Am. Chem. Soc. 2006, 128, 6804. DOI: 10.1021/ja061731n(c) You, Y.; Zhang, L.; Cui, L.; Mi, X.; Luo, S. Angew. Chem., Int. Ed. 2017, 56, 13814. DOI: 10.1002/anie.201707005
  3. Selected examples see (a) Hu, W. H.; Xu, X. F.; Zhou, J.; Liu, W. J.; Huang, H. X.; Hu, J.; Yang, L. P.; Gong, L. Z. J. Am. Chem. Soc.2008, 130, 7782. DOI: 10.1021/ja801755z (b) Jiang, J.; Xu, H.-D.; Xi, J.-B.; Ren, B.-Y.; Lv, F.-P.; Guo, X.; Jiang, L.-Q.; Zhang, Z.-Y.: Hu, W. H. J. Am. Chem. Soc. 2011, 133, 8428. DOI: 10.1021/ja201589k
  4. (a) Phipps, R.; Hamilton, G.; Toste, F. D. Nat. Chem.2012, 4, 603. DOI: 10.1038/nchem.1405(b) Mahlau, M.; List, B. Angew. Chem., Int. Ed. 2013,52, 518 DOI: 10.1002/anie.201205343(c) Brak, K.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2013, 52, 534. DOI: 10.1002/anie.201205449
  5. Gheewala, C. D.; Collins, B. E.; Lambert. Science 2016, 351, 961. DOI: 1126/science.aad0591
山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 変わったガラス器具達
  2. 特定の場所の遺伝子を活性化できる新しい分子の開発
  3. サイエンスアゴラの魅力を聞くー「日本蛋白質構造データバンク」工藤…
  4. Ph.D.化学者が今年のセンター試験(化学)を解いてみた
  5. 細胞を模倣したコンピューター制御可能なリアクター
  6. 第37回反応と合成の進歩シンポジウムに参加してきました。
  7. Happy Friday?
  8. 自宅での仕事に飽きたらプレゼン動画を見よう

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 超原子価ヨウ素を触媒としたジフルオロ化反応
  2. 阪大・プリンストン大が発見、”高温”でも超伝導
  3. “結び目”をストッパーに使ったロタキサンの形成
  4. 兄貴達と化学物質
  5. コロナウイルスが免疫システムから逃れる方法(1)
  6. ビス(アセトニトリル)パラジウム(II)ジクロリド : Dichlorobis(acetonitrile)palladium(II)
  7. 田辺製薬、エイズ関連治療薬「バリキサ錠450mg」を発売
  8. ボールドウィン則 Baldwin’s Rule
  9. 化学構造式描画のスタンダードを学ぼう!【応用編】
  10. 多摩霊園

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年3月
« 2月   4月 »
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

注目情報

最新記事

MEDCHEM NEWSと提携しました

「くすり」に関係する研究者や技術者が約1万7専任が所属する日本薬学会。そ…

抗体を液滴に濃縮し細胞内へ高速輸送:液-液相分離を活用した抗体の新規細胞内輸送法の開発

第341回のスポットライトリサーチは、京都大学 薬学研究科(二木研究室)博士後期課程1年の岩田恭宗さ…

革新的なオンライン会場!「第53回若手ペプチド夏の勉強会」参加体験記

夏休みも去って新学期も始まり、研究者としては科研費申請に忙しい時期ですね。学会シーズン到来の足音も聞…

実験手袋をいろいろ試してみたーつかいすてから高級手袋までー

前回は番外編でしたが、試してみたシリーズ本編に戻ります。引き続き実験関係の消耗品…

第164回―「光・熱エネルギーを変換するスマート材料の開発」Panče Naumov教授

第164回の海外化学者インタビューは、パンチェ・ナウモフ教授です。大阪大学大学院工学研究科 生命先端…

SNS予想で盛り上がれ!2021年ノーベル化学賞は誰の手に?

今年もノーベル賞シーズンの到来です!化学賞は日本時間 10月6日(水) 18時45分に発表です。昨年…

カーボンナノチューブ薄膜のSEM画像を生成し、物性を予測するAIが開発される

先端素材高速開発技術研究組合(ADMAT)、日本ゼオンは産業技術総合研究所(AIST)と共同で、NE…

ケムステ版・ノーベル化学賞候補者リスト【2021年版】

各媒体からかき集めた情報を元に、「未来にノーベル化学賞の受賞確率がある、存命化学者」をリストアップし…

ライトケミカル工業2023卒採用情報

当社の技術グループは、20代~30代の若手社員が重要な主要案件を担当しています。広範囲で高レベルな化…

アブラナ科植物の自家不和合性をタンパク質複合体の観点から解明:天然でも希少なSP11タンパク質の立体構造予測を踏まえて

第340回のスポットライトリサーチは、東京大学 大学院農学生命科学研究科の森脇 由隆…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP