[スポンサーリンク]

化学者のつぶやき

求電子剤側で不斉を制御したアミノメチル化反応

[スポンサーリンク]

イミニウムイオンの対アニオンで不斉を制御するアミノメチル化反応が報告された。求核剤側で不斉を制御する従来法とは異なり、新しい求核剤を用いることができる。

アミノメチル化とその不斉制御法

天然物や医薬品に頻出する「アミノメチル部位」を、分子に効率よく導入する手法は合成化学的に有用である。これまで金属触媒反応やラジカル反応によるアミノメチル化が多数報告されている[1]。しかし、触媒的不斉アミノメチル化の例は限定的である。代表例としてプロリン触媒を用いたケトンとイミニウムイオンのMannich型不斉アミノメチル化がある(図1A[2a]。ケトンとプロリンから生成したキラルなエナミン(求核剤)が、系中で調製したイミニウムイオン(求電子剤)に求核攻撃を行うことで不斉を発現している。また、他のキラルアミン触媒存在下、求核剤にアルデヒド[2b]1,3–ジケトン[2c]、を用いる同様な不斉アミノメチル化反応も報告されている(図1B)。これらの例は、全てキラルな求核剤が不斉を誘導するものであり、その結果、エナミンを生成し得るカルボニル化合物に限られるといった課題がある。

一方で、中山大学のHu教授らはキラルリン酸を触媒とした、ジアゾ化合物とイミン、アルコールもしくはカーバマートとの不斉3成分連結反応を開発した(1B)[3]。従来法とは異なる求電子剤側による不斉制御であり、新しい求核剤を用いることができたが、求電子剤は水素結合を作れる安定なイミンに限られた。また、不斉制御には対アニオンと求核剤の水素結合を必要としないAsymmetric Counter–Anion–Directed Catalysis (ACDC)があるが、アミノメチル化へと展開した例はなかった[4]

図1.(A) 従来の主な不斉アミノメチル化 (B) キラルリン酸と水素結合を介したイミンによる不斉誘導

“Asymmetric Counter–Anion–Directed Aminomethylation: Synthesis of Chiral β–Amino Acids via Trapping of an Enol Intermediate”

Kang, Z.; Wang, Y.; Zhang, D.; Wu, R.; Xu, X.; Hu, W. J. Am. Chem. Soc. 2019, 141, 1473. DOI: 10.1021/jacs.8b12832

論文著者の紹介

研究者:Wenhao Hu

研究者の経歴:
1983-1987 B.S. Sichuan University
1987-1990 M.S. Chengdu Institute of Organic Chemistry (CIOC)
1995-1998 Ph.D. Hong Kong Polytechnic University (Prof. Albert S. C. Chan)
1998-2001 Posdoc, University of Arizona (Prof. Michael P. Doyle)
2002-2006 Medicinal Chemist (Genesoft), Process Chemist (Bristol–Myers)
2006-2016 Professor, Department of Chemistry, East China Normal University
2016-           Professor, School of Pharmaceutical Sciences, Sun Yat-Sen University

研究内容:活性中間体を捕捉する多成分連結反応

論文の概要

著者らは、ACDCによるイミニウムイオンを用いた不斉アミノメチル化を達成した(2A)。初めにキラルブレンステッド酸触媒の検討を行った。前反応同様に、キラルリン酸を用いたが、エナンチオ選択性は向上しなかった。そこで、Lambertらが報告したシクロペンタジエニル骨格をもつブレンステッド酸(5d, 5e)(5)を用いたところ、高いエナンチオ選択性を示すことを見出した。本反応は基質適用範囲が広くαジアゾエステルには様々な置換基をもつ芳香環(4b~4f)やスチリル基(4g)を用いることができる。アルコールもベンジルアルコール類以外も脂肪族アルコール(4h~4l)や、ヘテロ環のついたアルコール(4m)も適用できる。アミンは芳香環上の置換基が変化しても(4n~4p)問題なく反応が進行する(2B)。また、4αヒドロキシβ­­­アミノ酸やαヒドロキシβラクタムへと誘導可能である。著者らは、実験結果およびDFT計算結果から推定される触媒サイクルを提示している(2C)。まず、1Pdによりカルベノイドが発生する。にアルコールが求核攻撃、続くPdの脱離およびプロトン授受によりエノールが生成する。一方で、35dは容易にメタノールの脱離を伴ってイオン対を形成する。こののイミニウムイオンとエノールMannich型反応により目的の4が生成する。著者らは、DFT計算によりこのエナンチオ選択性の発現機構を証明しているが詳しくは本論文を参照されたい。

図2. (A) キラルリン酸検討 (B) 基質適用範囲 (C) 推定反応機構

 

以上、キラルブレンステッド酸5dを用いた、高エナンチオ選択的アミノメチル化が報告された。本不斉アミノメチル化の創薬や天然物合成研究への利用が期待される。

参考文献

  1. Selected examples see: (a) Seayad, A.; Ahmed, M.; Klein, H.; Jackstell, R.; Gross, T.; Beller, M. Science 2002, 297, 1676. DOI: 1126/science.1074801(b) Remeur, C.; Kelly, C. B.; Patel, N. R.; Molander, G. A. ACS Catal. 2017, 7, 6065. DOI: 10.1021/acscatal.7b01973 ほぼ同時期に不斉反応ではないが、類似反応が報告された(c) Zhang , Y.; Yu, B.; Gao, B.; Zhang, T.; Huang, H. Org. Lett. 2019, 21, 535. DOI:10.1021/acs.orglett.8b03847(d) Fujii, S.; Konishi, T.; Matsumoto, Y.; Yamaoka, Y.; Takasu, K.; Yamada, K. J. Org. Chem. 2014, 79, 8128. DOI: 10.1021/jo501332j
  2. (a) Ibrahem, I.; Casas, J.; Cordova, A. Angew. Chem., Int. Ed. 2004, 43, 6528. DOI: 10.1002/anie.200460678(b) Chi, Y.; Gellman, S. H. J. Am. Chem. Soc. 2006, 128, 6804. DOI: 10.1021/ja061731n(c) You, Y.; Zhang, L.; Cui, L.; Mi, X.; Luo, S. Angew. Chem., Int. Ed. 2017, 56, 13814. DOI: 10.1002/anie.201707005
  3. Selected examples see (a) Hu, W. H.; Xu, X. F.; Zhou, J.; Liu, W. J.; Huang, H. X.; Hu, J.; Yang, L. P.; Gong, L. Z. J. Am. Chem. Soc.2008, 130, 7782. DOI: 10.1021/ja801755z (b) Jiang, J.; Xu, H.-D.; Xi, J.-B.; Ren, B.-Y.; Lv, F.-P.; Guo, X.; Jiang, L.-Q.; Zhang, Z.-Y.: Hu, W. H. J. Am. Chem. Soc. 2011, 133, 8428. DOI: 10.1021/ja201589k
  4. (a) Phipps, R.; Hamilton, G.; Toste, F. D. Nat. Chem.2012, 4, 603. DOI: 10.1038/nchem.1405(b) Mahlau, M.; List, B. Angew. Chem., Int. Ed. 2013,52, 518 DOI: 10.1002/anie.201205343(c) Brak, K.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2013, 52, 534. DOI: 10.1002/anie.201205449
  5. Gheewala, C. D.; Collins, B. E.; Lambert. Science 2016, 351, 961. DOI: 1126/science.aad0591
山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 有機合成化学協会誌2017年5月号 特集:キラリティ研究の最前線…
  2. 150度以上の高温で使える半導体プラスチック
  3. 有機合成化学協会誌2020年1月号:ドルテグラビルナトリウム・次…
  4. 学振申請書を磨き上げる11のポイント [文章編・後編]
  5. ぼっち学会参加の極意
  6. 第99回日本化学会年会 付設展示会ケムステキャンペーン Part…
  7. カーボンナノチューブを有機色素で染めて使う新しい光触媒技術
  8. 「ヨーロッパで修士号と博士号を取得する」 ―ETH Zürich…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. natureasia.com & Natureダイジェスト オンラインセミナー開催
  2. ナノ孔に吸い込まれていく分子の様子をスナップショット撮影!
  3. 炭素をつなげる王道反応:アルドール反応 (3)
  4. ウーリンス試薬 Woollins’ Reagent
  5. 2011年イグノーベル賞決定!「わさび警報装置」
  6. 第108回―「Nature Chemistryの編集長として」Stuart Cantrill博士
  7. バイオ触媒によるトリフルオロメチルシクロプロパンの不斉合成
  8. 会社説明会で鋭い質問をしよう
  9. 第三回 ケムステVシンポ「若手化学者、海外経験を語る」を開催します!
  10. 天然物の全合成―2000~2008

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

溶液を流すだけで誰でも簡単に高分子を合成できるリサイクル可能な不均一系ラジカル発生剤の開発

第 295 回のスポットライトリサーチは東京大学豊田研究室の博士課程 1 年 岡美奈実さんと修士課程…

Carl Boschの人生 その9

Tshozoです。書いてると色々膨らんで収集がつかなくなりますね。ということで前回の続き。W…

創薬・医療系ベンチャー支援プログラム”BlockbusterTOKYO” ビジネスプラン発表会を開催!

東京都が主催し、Beyond Next Ventures株式会社が運営するBlockbuster T…

酸化反応を駆使した(-)-deoxoapodineの世界最短合成

第294回のスポットライトリサーチは、吉田慶 博士にお願いしました。今回取り上げる研究は有機…

特許取得のための手続き

bergです。本記事では特許出願に必要な手続きについてかいつまんでご紹介します。皆さんの研究もひょっ…

「ソーシャルメディアを活用したスタートアップの価値向上」 BlockbusterTOKYO 2020 第9回 研修プログラムを実施!

Blockbuster TOKYOは東京都が主催し、Beyond Next Ventures株式会社…

カルボカチオンの華麗なリレー:ブラシラン類の新たな生合成経路

反応経路の自動探索によりセスキテルペンのトリコブラシレノールの新たな全生合成経路が提唱された。ト…

特許の効力と侵害

bergです。今回は知的財産権の代表格である特許権について、その効力と侵害された/侵害してしまったと…

Chem-Station Twitter

PAGE TOP