[スポンサーリンク]

化学者のつぶやき

シンプルなα,β-不飽和カルベン種を生成するレニウム触媒系

2016年、東京工業大学・岩澤伸治らは、単純なプロパルギルエーテルを原料としてα,β-不飽和カルベン種を発生させ、[4+3]付加環化形式による触媒的7員炭素環構築法の確立に成功した。

“Rhenium(I)-Catalyzed Generation of α,β-Unsaturated Carbene Complex Intermediates from Propargyl Ether for the Preparation of Cycloheptadiene Derivatives”
Sogo, h.; Iwasawa, N.* Angew. Chem. Int. Ed. 2016, 55, 10057-10060. DOI: 10.1002/anie.201604371

問題設定と解決した点

 α,β-不飽和カルベンは合成的に有用な3炭素ユニットになることが知られており、シクロプロパン化や環形成反応に用いられてきた[1,2]。

 α,β-不飽和カルベンの触媒的生成法の一つに、アルキンの活性化による分子内求核攻撃(Nu)→金属電子の押し出しによるプロパルギル脱離基(X)の放出 という機構が知られている(下図)[1]。方法論の都合、α位に求核剤(Nu)由来の置換基をもつカルベンのみが合成できる。

 今回筆者らは同様の機構で、α位が水素置換(Nu=H)されたα,β-不飽和カルベンを発生させることに成功し、[4+3]付加環化反応に応用した。入手容易なプロパルギルエーテルを出発点とできることから、幅広い合成への応用が期待できる。

技術や手法の肝

 上記スキームのNu、Xの設定に工夫がある。すなわち、エーテルα位ヒドリド移動(=Nu)を経て、生じたオキソニウムカチオン(=X)からカルボニル化合物を脱離基とすれば、α位無置換α,β-不飽和カルベンが発生できるのではないか、との発想に基づき、触媒探索を行っている。この際、π-アルキン錯体を経由する1,4-ヒドリド移動、ビニリデン錯体を経由する1,5-ヒドリド移動の2通りの経路が考えられる。

主張の有効性検証

①金属種の検討

アルキン活性化能を持ちうる様々な金属触媒の検討を行ったところ、PtCl2とReX(CO)5が[4+3]付加環化反応を進行させることを見いだした。最終的にReI(CO)5を2.5 mol%用いる冒頭図の条件に最適化させている。

②基質一般性の検討

ジエン側については、アリール基置換型、アルキル置換型ともに適用がある。

プロパルギルエーテル側に関しては、3級エーテルでは高収率で進行する。2級エーテルではジアステレオ選択性の制御が、1級エーテルではレニウムの関与しない[4+2]環形成反応の制御が難しい。

③反応機構に関する考察

 非ジエン型のシリルエノールエーテルを用いると、ビニルシクロプロパンを生成する。このことからカルベン錯体のオレフェンへの付加が経由されることが示唆された。

 アルキン末端を重水素化した基質を用いると、生成物では重水素が内部炭素に移動した。このことから、ビニリデン錯体を経由する1,5-ヒドリド移動機構で進行していることが示唆された。

 これらの事実を考え合わせると、カルベン錯体がアルケンとシクロプロパン化反応を起こし、その後ジビニルシクロプロパン転位を経ることで7員炭素環が得られていると考えられる。

議論すべき点

  • ジエン側の基質を色々見せているが、結局OSiの部分は必須らしい。また、その隣接する炭素に置換基のある化合物は未検討。
  • ビニリデン錯体経由なので、アルキンの末端が無置換の基質に限定されている。合成的有用性を考えると、そこに炭素ユニットなりハロゲンなりが入ると幅が広がるが、π-アルキン錯体経由ではヒドリドを上手く飛ばすような分子設計は難しくなるか。
  • 筆者らは「簡便な方法でできるようにした」と述べているが、そもそもこんな不飽和カルベンを作れる方法は大変少なく、事例として貴重である。古典的手法として以下のような手法が報告されている[3]が汎用性が低そう。

次に読むべき論文は?

  • Au,Ptを用いたカルベン発生手法[1]
  • 1,5-ヒドリド転位のReview[2]
  • カルベン錯体の化学[4]

参考文献

  1. Tang, W. et al. Chem. Eur. J. 2009, 15, 3243. DOI: 10.1002/chem.200801387
  2. Review: (a) Maulide, N. et al. Chem. Eur. J. 2013, 19, 13274. DOI: 10.1002/chem.201301522 (b) Seidel, D. et al. Angew. Chem. Int. Ed. 2014, 53, 5010. DOI: 10.1002/anie.201306489
  3. Review: Brookhart, M. et al. Chem. Rev. 1987, 87, 411. DOI: 10.1021/cr00078a008
  4. ハートウィグ有機遷移金属化学 上 13章

 

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 2011年イグノーベル賞決定!「わさび警報装置」
  2. アメリカ化学留学 ”実践編 ー英会話の勉強ーR…
  3. 計算化学者は見下されているのか? Part 1
  4. Wileyより2つのキャンペーン!ジャーナル無料進呈と書籍10%…
  5. イオン性置換基を有するホスホール化合物の発光特性
  6. GRE Chemistry 受験報告 –試験対策編–
  7. 人が集まるポスター発表を考える
  8. 3級C-H結合選択的な触媒的不斉カルベン挿入反応

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 落葉の化学~「コロ助の科学質問箱」に捧ぐ
  2. 製薬会社のテレビCMがステキです
  3. 円偏光スピンLEDの創製
  4. 留学せずに英語をマスターできるかやってみた(1年目)
  5. 米で処方せん不要の「やせ薬」発売、売り切れ続出
  6. ちょっとキレイにサンプル撮影
  7. 論文引用ランキングから見る、化学界の世界的潮流
  8. 私がケムステスタッフになったワケ(3)
  9. 難溶性多糖の成形性を改善!新たな多糖材料の開発に期待!
  10. 化学系プレプリントサーバ「ChemRxiv」の設立が決定

関連商品

注目情報

注目情報

最新記事

化学構造式描画のスタンダードを学ぼう!【応用編】

前回の【基本編】に引き続き、化学構造式描画の標準ガイドラインをご紹介します。“Graphical…

アジドの3つの窒素原子をすべて入れる

ホスフィン触媒を用い、アジド化合物とα,β-エノンからβ-アミノα-ジアゾカルボニル化合物を合成した…

工程フローからみた「どんな会社が?」~タイヤ編 その1

Tshozoです。今回の主役はゴムで出来ている車両用タイヤ。通勤時に道路で毎日目にするわりに…

感染制御ー薬剤耐性(AMR)ーChemical Times特集より

関東化学が発行する化学情報誌「ケミカルタイムズ」。年4回発行のこの無料雑誌の紹介をしています。…

有機合成化学協会誌2019年1月号:大環状芳香族分子・多環性芳香族ポリケチド天然物・りん光性デンドリマー・キャビタンド・金属カルベノイド・水素化ジイソブチルアルミニウム

有機合成化学協会が発行する有機合成化学協会誌、2019年1月号がオンライン公開されました。今…

リチウムイオンバッテリーの容量を最大70%まで向上させる技術が開発されている

スマートフォンや電気自動車の普及によって、エネルギー密度が高く充電効率も良いリチウムイオンバッテリー…

Chem-Station Twitter

PAGE TOP