[スポンサーリンク]

化学者のつぶやき

シンプルなα,β-不飽和カルベン種を生成するレニウム触媒系

[スポンサーリンク]

2016年、東京工業大学・岩澤伸治らは、単純なプロパルギルエーテルを原料としてα,β-不飽和カルベン種を発生させ、[4+3]付加環化形式による触媒的7員炭素環構築法の確立に成功した。

“Rhenium(I)-Catalyzed Generation of α,β-Unsaturated Carbene Complex Intermediates from Propargyl Ether for the Preparation of Cycloheptadiene Derivatives”
Sogo, h.; Iwasawa, N.* Angew. Chem. Int. Ed. 2016, 55, 10057-10060. DOI: 10.1002/anie.201604371

問題設定と解決した点

 α,β-不飽和カルベンは合成的に有用な3炭素ユニットになることが知られており、シクロプロパン化や環形成反応に用いられてきた[1,2]。

 α,β-不飽和カルベンの触媒的生成法の一つに、アルキンの活性化による分子内求核攻撃(Nu)→金属電子の押し出しによるプロパルギル脱離基(X)の放出 という機構が知られている(下図)[1]。方法論の都合、α位に求核剤(Nu)由来の置換基をもつカルベンのみが合成できる。

 今回筆者らは同様の機構で、α位が水素置換(Nu=H)されたα,β-不飽和カルベンを発生させることに成功し、[4+3]付加環化反応に応用した。入手容易なプロパルギルエーテルを出発点とできることから、幅広い合成への応用が期待できる。

技術や手法の肝

 上記スキームのNu、Xの設定に工夫がある。すなわち、エーテルα位ヒドリド移動(=Nu)を経て、生じたオキソニウムカチオン(=X)からカルボニル化合物を脱離基とすれば、α位無置換α,β-不飽和カルベンが発生できるのではないか、との発想に基づき、触媒探索を行っている。この際、π-アルキン錯体を経由する1,4-ヒドリド移動、ビニリデン錯体を経由する1,5-ヒドリド移動の2通りの経路が考えられる。

主張の有効性検証

①金属種の検討

アルキン活性化能を持ちうる様々な金属触媒の検討を行ったところ、PtCl2とReX(CO)5が[4+3]付加環化反応を進行させることを見いだした。最終的にReI(CO)5を2.5 mol%用いる冒頭図の条件に最適化させている。

②基質一般性の検討

ジエン側については、アリール基置換型、アルキル置換型ともに適用がある。

プロパルギルエーテル側に関しては、3級エーテルでは高収率で進行する。2級エーテルではジアステレオ選択性の制御が、1級エーテルではレニウムの関与しない[4+2]環形成反応の制御が難しい。

③反応機構に関する考察

 非ジエン型のシリルエノールエーテルを用いると、ビニルシクロプロパンを生成する。このことからカルベン錯体のオレフェンへの付加が経由されることが示唆された。

 アルキン末端を重水素化した基質を用いると、生成物では重水素が内部炭素に移動した。このことから、ビニリデン錯体を経由する1,5-ヒドリド移動機構で進行していることが示唆された。

 これらの事実を考え合わせると、カルベン錯体がアルケンとシクロプロパン化反応を起こし、その後ジビニルシクロプロパン転位を経ることで7員炭素環が得られていると考えられる。

議論すべき点

  • ジエン側の基質を色々見せているが、結局OSiの部分は必須らしい。また、その隣接する炭素に置換基のある化合物は未検討。
  • ビニリデン錯体経由なので、アルキンの末端が無置換の基質に限定されている。合成的有用性を考えると、そこに炭素ユニットなりハロゲンなりが入ると幅が広がるが、π-アルキン錯体経由ではヒドリドを上手く飛ばすような分子設計は難しくなるか。
  • 筆者らは「簡便な方法でできるようにした」と述べているが、そもそもこんな不飽和カルベンを作れる方法は大変少なく、事例として貴重である。古典的手法として以下のような手法が報告されている[3]が汎用性が低そう。

次に読むべき論文は?

  • Au,Ptを用いたカルベン発生手法[1]
  • 1,5-ヒドリド転位のReview[2]
  • カルベン錯体の化学[4]

参考文献

  1. Tang, W. et al. Chem. Eur. J. 2009, 15, 3243. DOI: 10.1002/chem.200801387
  2. Review: (a) Maulide, N. et al. Chem. Eur. J. 2013, 19, 13274. DOI: 10.1002/chem.201301522 (b) Seidel, D. et al. Angew. Chem. Int. Ed. 2014, 53, 5010. DOI: 10.1002/anie.201306489
  3. Review: Brookhart, M. et al. Chem. Rev. 1987, 87, 411. DOI: 10.1021/cr00078a008
  4. ハートウィグ有機遷移金属化学 上 13章

 

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. NMRのプローブと測定(Bruker編)
  2. 中性ケイ素触媒でヒドロシリル化
  3. 高分子鎖デザインがもたらすポリマーサイエンスの再創造|オンライン…
  4. 最小のシクロデキストリンを組み上げる!
  5. Dead Endを回避せよ!「全合成・極限からの一手」①
  6. 自分の強みを活かして化学的に新しいことの実現を!【ケムステ×He…
  7. 薬剤師国家試験にチャレンジ!【有機化学編その2】
  8. 化学者のためのエレクトロニクス講座~次世代配線技術編

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 電場を利用する効率的なアンモニア合成
  2. どっちをつかう?:in spite ofとdespite
  3. カイコが紡ぐクモの糸
  4. 第六回サイエンス・インカレの募集要項が発表
  5. 「カルピス」みらいのミュージアム
  6. 1-ヒドロキシタキシニンの不斉全合成
  7. Pubmed, ACS検索
  8. マット・フランシス Matthew B. Francis
  9. 第二回ケムステVシンポ「光化学へようこそ!」開催報告
  10. Thieme-IUPAC Prize in Synthetic Organic Chemistry ―受賞者一覧

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年6月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

注目情報

最新記事

【12月開催】第4回 マツモトファインケミカル技術セミナー有機金属化合物「オルガチックス」の触媒としての利用-ウレタン化触媒としての利用-

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合…

化学ゆるキャラ大集合

企業PRの手段の一つとして、キャラクターを作りホームページやSNSで登場させることがよく行われていま…

最先端バイオエコノミー社会を実現する合成生物学【対面講座】

開講期間2022年12月12日(月)13:00~16:202022年12月13日(火)1…

複雑なモノマー配列を持ったポリエステル系ブロックポリマーをワンステップで合成

第445回のスポットライトリサーチは、北海道大学 大学院工学研究院 応用化学部門 高分子化学研究室(…

河崎 悠也 Yuuya Kawasaki

河崎 悠也 (かわさき ゆうや) は、日本の有機化学者。九州大学先導物質化学研究所 …

研究者1名からでも始められるMIの検討-スモールスタートに取り組む前の3つのステップ-

開催日:2022/12/07  申込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

吉田 優 Suguru Yoshida

 吉田 優(よしだ すぐる)は、日本の化学者。専門は、有機合成化学、ケミカルバイオロジー。2…

小山 靖人 Yasuhito Koyama

小山 靖人(こやま やすひと)は、日本の有機化学者。富山県立大学工学部医薬品工学…

ポンコツ博士の海外奮闘録XIV ~博士,釣りをする~

シリーズ累計20話!!タイトルの○数字がなくなりました。節々の回は出来る限り実験ネタや個人的なグッと…

定型抗精神病薬 「ピモジド」の化学修飾により新規難治性疼痛治療薬として極めて有望な化合物の創製に成功

第444回のスポットライトリサーチは、近畿大学大学院 薬学研究科 薬学専攻 病態薬理学研究室の笠波 …

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP