[スポンサーリンク]

化学者のつぶやき

シンプルなα,β-不飽和カルベン種を生成するレニウム触媒系

2016年、東京工業大学・岩澤伸治らは、単純なプロパルギルエーテルを原料としてα,β-不飽和カルベン種を発生させ、[4+3]付加環化形式による触媒的7員炭素環構築法の確立に成功した。

“Rhenium(I)-Catalyzed Generation of α,β-Unsaturated Carbene Complex Intermediates from Propargyl Ether for the Preparation of Cycloheptadiene Derivatives”
Sogo, h.; Iwasawa, N.* Angew. Chem. Int. Ed. 2016, 55, 10057-10060. DOI: 10.1002/anie.201604371

問題設定と解決した点

 α,β-不飽和カルベンは合成的に有用な3炭素ユニットになることが知られており、シクロプロパン化や環形成反応に用いられてきた[1,2]。

 α,β-不飽和カルベンの触媒的生成法の一つに、アルキンの活性化による分子内求核攻撃(Nu)→金属電子の押し出しによるプロパルギル脱離基(X)の放出 という機構が知られている(下図)[1]。方法論の都合、α位に求核剤(Nu)由来の置換基をもつカルベンのみが合成できる。

 今回筆者らは同様の機構で、α位が水素置換(Nu=H)されたα,β-不飽和カルベンを発生させることに成功し、[4+3]付加環化反応に応用した。入手容易なプロパルギルエーテルを出発点とできることから、幅広い合成への応用が期待できる。

技術や手法の肝

 上記スキームのNu、Xの設定に工夫がある。すなわち、エーテルα位ヒドリド移動(=Nu)を経て、生じたオキソニウムカチオン(=X)からカルボニル化合物を脱離基とすれば、α位無置換α,β-不飽和カルベンが発生できるのではないか、との発想に基づき、触媒探索を行っている。この際、π-アルキン錯体を経由する1,4-ヒドリド移動、ビニリデン錯体を経由する1,5-ヒドリド移動の2通りの経路が考えられる。

主張の有効性検証

①金属種の検討

アルキン活性化能を持ちうる様々な金属触媒の検討を行ったところ、PtCl2とReX(CO)5が[4+3]付加環化反応を進行させることを見いだした。最終的にReI(CO)5を2.5 mol%用いる冒頭図の条件に最適化させている。

②基質一般性の検討

ジエン側については、アリール基置換型、アルキル置換型ともに適用がある。

プロパルギルエーテル側に関しては、3級エーテルでは高収率で進行する。2級エーテルではジアステレオ選択性の制御が、1級エーテルではレニウムの関与しない[4+2]環形成反応の制御が難しい。

③反応機構に関する考察

 非ジエン型のシリルエノールエーテルを用いると、ビニルシクロプロパンを生成する。このことからカルベン錯体のオレフェンへの付加が経由されることが示唆された。

 アルキン末端を重水素化した基質を用いると、生成物では重水素が内部炭素に移動した。このことから、ビニリデン錯体を経由する1,5-ヒドリド移動機構で進行していることが示唆された。

 これらの事実を考え合わせると、カルベン錯体がアルケンとシクロプロパン化反応を起こし、その後ジビニルシクロプロパン転位を経ることで7員炭素環が得られていると考えられる。

議論すべき点

  • ジエン側の基質を色々見せているが、結局OSiの部分は必須らしい。また、その隣接する炭素に置換基のある化合物は未検討。
  • ビニリデン錯体経由なので、アルキンの末端が無置換の基質に限定されている。合成的有用性を考えると、そこに炭素ユニットなりハロゲンなりが入ると幅が広がるが、π-アルキン錯体経由ではヒドリドを上手く飛ばすような分子設計は難しくなるか。
  • 筆者らは「簡便な方法でできるようにした」と述べているが、そもそもこんな不飽和カルベンを作れる方法は大変少なく、事例として貴重である。古典的手法として以下のような手法が報告されている[3]が汎用性が低そう。

次に読むべき論文は?

  • Au,Ptを用いたカルベン発生手法[1]
  • 1,5-ヒドリド転位のReview[2]
  • カルベン錯体の化学[4]

参考文献

  1. Tang, W. et al. Chem. Eur. J. 2009, 15, 3243. DOI: 10.1002/chem.200801387
  2. Review: (a) Maulide, N. et al. Chem. Eur. J. 2013, 19, 13274. DOI: 10.1002/chem.201301522 (b) Seidel, D. et al. Angew. Chem. Int. Ed. 2014, 53, 5010. DOI: 10.1002/anie.201306489
  3. Review: Brookhart, M. et al. Chem. Rev. 1987, 87, 411. DOI: 10.1021/cr00078a008
  4. ハートウィグ有機遷移金属化学 上 13章

 

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. テトラセノマイシン類の全合成
  2. 研究室での英語【Part1】
  3. 多置換ケトンエノラートを立体選択的につくる
  4. 進化する電子顕微鏡(TEM)
  5. 論文執筆で気をつけたいこと20(1)
  6. エステルからエーテルをつくる脱一酸化炭素金属触媒
  7. 一流化学者たちの最初の一歩
  8. 「重曹でお掃除」の化学(その2)

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 【速報】2012年ノーベル化学賞発表!!「Gタンパク質共役受容体に関する研究」
  2. 第30回「化学研究の成果とワクワク感を子供たちにも伝えたい」 玉尾皓平教授
  3. ウェブサイトのリニューアル
  4. 環境省、04年版「化学物質ファクトシート」作成
  5. 1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン:1,5,7-Triazabicyclo[4.4.0]dec-5-ene
  6. ベンゼンスルホヒドロキサム酸を用いるアルデヒドとケトンの温和な条件下でのアセタール保護反応
  7. 光で脳/神経科学に革命を起こす「オプトジェネティクス」
  8. 「化学の匠たち〜情熱と挑戦〜」(日本化学会春季年会市民公開講座)
  9. 旭化成、5年で戦略投資4千億
  10. 最も引用された論文

関連商品

注目情報

注目情報

最新記事

Carl Boschの人生 その2

Tshozoです。前回の続き、早速参ります。筆者のフォルダが火を噴く動画集 おそらく現存…

トヨタ、世界初「省ネオジム耐熱磁石」開発

トヨタは、今後急速な拡大が予想される電動車に搭載される高出力モーターなど様々なモーターに使用されるネ…

触媒のチカラで拓く位置選択的シクロプロパン合成

嵩高いコバルト錯体を触媒として用いた位置選択的Simmons–Smith型モノシクロプロパン化反応が…

「原子」が見えた! なんと一眼レフで撮影に成功

An Oxford University student who captured an image…

2018年3月2日:ケムステ主催「化学系学生対象 企業合同説明会」

2月も後半となり、3月1日の就活解禁に向けて、2019年卒業予定の学生のみなさんは、就活モードが本格…

高専シンポジウム in KOBE に参加しました –その 2: 牛の尿で発電!? 卵殻膜を用いた燃料電池–

1 月 27 日に開催された第 23 回 高専シンポジウム in KOBE の参加報告の後編です。前…

Chem-Station Twitter

PAGE TOP