[スポンサーリンク]

化学者のつぶやき

シンプルなα,β-不飽和カルベン種を生成するレニウム触媒系

2016年、東京工業大学・岩澤伸治らは、単純なプロパルギルエーテルを原料としてα,β-不飽和カルベン種を発生させ、[4+3]付加環化形式による触媒的7員炭素環構築法の確立に成功した。

“Rhenium(I)-Catalyzed Generation of α,β-Unsaturated Carbene Complex Intermediates from Propargyl Ether for the Preparation of Cycloheptadiene Derivatives”
Sogo, h.; Iwasawa, N.* Angew. Chem. Int. Ed. 2016, 55, 10057-10060. DOI: 10.1002/anie.201604371

問題設定と解決した点

 α,β-不飽和カルベンは合成的に有用な3炭素ユニットになることが知られており、シクロプロパン化や環形成反応に用いられてきた[1,2]。

 α,β-不飽和カルベンの触媒的生成法の一つに、アルキンの活性化による分子内求核攻撃(Nu)→金属電子の押し出しによるプロパルギル脱離基(X)の放出 という機構が知られている(下図)[1]。方法論の都合、α位に求核剤(Nu)由来の置換基をもつカルベンのみが合成できる。

 今回筆者らは同様の機構で、α位が水素置換(Nu=H)されたα,β-不飽和カルベンを発生させることに成功し、[4+3]付加環化反応に応用した。入手容易なプロパルギルエーテルを出発点とできることから、幅広い合成への応用が期待できる。

技術や手法の肝

 上記スキームのNu、Xの設定に工夫がある。すなわち、エーテルα位ヒドリド移動(=Nu)を経て、生じたオキソニウムカチオン(=X)からカルボニル化合物を脱離基とすれば、α位無置換α,β-不飽和カルベンが発生できるのではないか、との発想に基づき、触媒探索を行っている。この際、π-アルキン錯体を経由する1,4-ヒドリド移動、ビニリデン錯体を経由する1,5-ヒドリド移動の2通りの経路が考えられる。

主張の有効性検証

①金属種の検討

アルキン活性化能を持ちうる様々な金属触媒の検討を行ったところ、PtCl2とReX(CO)5が[4+3]付加環化反応を進行させることを見いだした。最終的にReI(CO)5を2.5 mol%用いる冒頭図の条件に最適化させている。

②基質一般性の検討

ジエン側については、アリール基置換型、アルキル置換型ともに適用がある。

プロパルギルエーテル側に関しては、3級エーテルでは高収率で進行する。2級エーテルではジアステレオ選択性の制御が、1級エーテルではレニウムの関与しない[4+2]環形成反応の制御が難しい。

③反応機構に関する考察

 非ジエン型のシリルエノールエーテルを用いると、ビニルシクロプロパンを生成する。このことからカルベン錯体のオレフェンへの付加が経由されることが示唆された。

 アルキン末端を重水素化した基質を用いると、生成物では重水素が内部炭素に移動した。このことから、ビニリデン錯体を経由する1,5-ヒドリド移動機構で進行していることが示唆された。

 これらの事実を考え合わせると、カルベン錯体がアルケンとシクロプロパン化反応を起こし、その後ジビニルシクロプロパン転位を経ることで7員炭素環が得られていると考えられる。

議論すべき点

  • ジエン側の基質を色々見せているが、結局OSiの部分は必須らしい。また、その隣接する炭素に置換基のある化合物は未検討。
  • ビニリデン錯体経由なので、アルキンの末端が無置換の基質に限定されている。合成的有用性を考えると、そこに炭素ユニットなりハロゲンなりが入ると幅が広がるが、π-アルキン錯体経由ではヒドリドを上手く飛ばすような分子設計は難しくなるか。
  • 筆者らは「簡便な方法でできるようにした」と述べているが、そもそもこんな不飽和カルベンを作れる方法は大変少なく、事例として貴重である。古典的手法として以下のような手法が報告されている[3]が汎用性が低そう。

次に読むべき論文は?

  • Au,Ptを用いたカルベン発生手法[1]
  • 1,5-ヒドリド転位のReview[2]
  • カルベン錯体の化学[4]

参考文献

  1. Tang, W. et al. Chem. Eur. J. 2009, 15, 3243. DOI: 10.1002/chem.200801387
  2. Review: (a) Maulide, N. et al. Chem. Eur. J. 2013, 19, 13274. DOI: 10.1002/chem.201301522 (b) Seidel, D. et al. Angew. Chem. Int. Ed. 2014, 53, 5010. DOI: 10.1002/anie.201306489
  3. Review: Brookhart, M. et al. Chem. Rev. 1987, 87, 411. DOI: 10.1021/cr00078a008
  4. ハートウィグ有機遷移金属化学 上 13章

 

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 今年も出ます!サイエンスアゴラ2014
  2. ウランガラス
  3. 有機合成化学協会誌2017年9月号:キラルケイ素・触媒反応・生体…
  4. 光刺激で超分子ポリマーのらせんを反転させる
  5. 緑色蛍光タンパク質を真似してRNAを光らせる
  6. なぜ青色LEDがノーベル賞なのか?ー基礎的な研究背景編
  7. 生物に打ち勝つ人工合成?アルカロイド骨格多様化合成法の開発
  8. Reaxys Prize 2011募集中!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 光エネルギーによって二酸化炭素を変換する光触媒の開発
  2. ケムステイブニングミキサー2017ー報告
  3. 免疫応答のシグナル伝達を遮断する新規な免疫抑制剤CPYPP
  4. ガン細胞を掴んで離さない分子の開発
  5. 超分子ポリマーを精密につくる
  6. UCLA研究員死亡事故・その後
  7. (-)-ウシクライドAの全合成と構造決定
  8. サイエンスアゴラの魅力を聞く-「iCeMS」水町先生
  9. はしか流行?
  10. 反応の選択性を制御する新手法

関連商品

注目情報

注目情報

最新記事

イオンの出入りを制御するキャップ付き分子容器の開発

第124回のスポットライトリサーチは、金沢大学 理工研究域物質化学系錯体化学研究分野(錯体化学・超分…

リチウムイオン電池の課題のはなし-1

Tshozoです。以前リチウムイオン電池に関するトピックを2つほど紹介した(記事:リチウムイ…

アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化

2015年、プリンストン大学・D. W. C. MacMillanらは、水素移動触媒(HAT)および…

三種類の分子が自発的に整列した構造をもつ超分子共重合ポリマーの開発

第123回のスポットライトリサーチは、テキサス大学オースティン校博士研究員(Jonathan L. …

超分子化学と機能性材料に関する国際シンポジウム2018

「超分子化学と機能性材料に関する国際シンポジウム2018」CEMS International Sy…

アメリカで Ph. D. を取る –研究室に訪問するの巻–

この連載は、米国の大学院で Ph.D. を取得することを目指す学生が日記感覚で近況を記録するためのも…

Chem-Station Twitter

PAGE TOP