[スポンサーリンク]

化学者のつぶやき

世界初!ラジカル1,2-リン転位

[スポンサーリンク]

1,2-リン転位を伴うトリ(tブチル)ホスフィンと末端アルキンの[3+2]付加環化反応が報告された。本反応を用いて様々な官能基をもつ末端アルキンから環状ホスホニウム塩を合成できる。

ラジカル1,2-転位反応

転位反応は化学結合の切断と形成を制御し、分子骨格を変化させる最も有用な反応のひとつである。カチオン経由の転位反応が多くを占めるが、近年、ラジカル化学の発展に伴い、ラジカル転位反応が注目される[1]。アルキルラジカルの1,2-転位反応では、熱力学的により安定なラジカルを生成するようにβ-置換基が隣接位に移動する。これまでにアリール基[2]、アルケニル基[3]、アルキニル基[4]、カルボニル基[5]などの移動をともなう炭素原子の1,2-転位反応が数多く報告されてきた(図1A)。一方で、酸素[6]やホウ素[7]、ハロゲン[8]等のヘテロ原子のラジカル1,2-転位反応は報告例が少なく、リンの1,2-転位反応は未だ報告されていない。

これまで著者らは、アルキンまたはアルケンとトリアリールホスフィンのC–P結合形成反応を開発してきた[9]。分子内水素原子移動(HAT)を利用した例として、2022年、トリ(o-トリル)ホスフィンによる末端アルキンのヒドロホスフィン化反応を報告した(図1B)[9d]。この反応では、光触媒により酸化されたホスフィンラジカルカチオンが末端アルキンへ付加した後、分子内HATによって安定なベンジルラジカルを生じる。その後一電子還元とプロトン化を経て、アルケニルホスホニウム塩を得る。

今回著者らは、1,2-リン転位を伴ったトリ(t-ブチル)ホスフィンと末端アルキンの[3+2]付加環化反応を報告した(図1C)。先行研究と同様にラジカルカチオンの付加と分子内HATにより一級ラジカルが生じた後、van der Waals錯体を経る1,2-リン転位により、環状ホスホニウム塩を与える反応機構が提唱されている。

図1. (A) ラジカル1,2-転位反応 (B) 先行研究 (C) 本研究

“Photocatalytic 1,2-Phosphorus-Migrative [3 + 2] Cycloaddition of Tri(tbutyl)phosphine with Terminal Alkynes”

Masuda, Y.; Ikeshita, D.; Higashida, K.; Yoshida, M.; Ishida, N.; Murakami, M.; Sawamura, M.  J. Am. Chem. Soc. 2023, 145, 19060–19066.

DOI: 10.1021/jacs.3c06760

論文著者の紹介

研究者:Masaya Sawamura (澤村正也)

研究者の経歴:

1981–1984                B.Sc., Kyoto University, Japan
1984–1989          Ph.D., Kyoto University, Japan (Prof. Yoshihiko Ito)
1989–1993          Assistant Professor, Kyoto University, Japan (Prof. Yoshihiko Ito)
1993–1994          Visiting Researcher, Harvard University, USA (Prof. Stuart L. Schreiber)
1995                       Assistant Professor, Tokyo Institute of Technology, Japan (Prof. Eiichi Nakamura)
1995                                                    Assistant Professor, The University of Tokyo, Japan (Prof. Eiichi Nakamura)
1996                                                    Lecturer, The University of Tokyo, Japan (Prof. Eiichi Nakamura)
1997–2001                                       Associate Professor, The University of Tokyo, Japan (Prof. Eiichi Nakamura)
2001–                                                  Professor, Hokkaido University, Japan

研究内容:有機合成触媒の分子デザイン、新規触媒反応の開発、触媒的不斉合成法の開発、触媒反応機構の理論的解明

研究者:Yusuke Masuda (増田侑亮)

研究者の経歴:

2009–2012                                       B.Sc., Kyoto University, Japan
2013–2017          Ph.D., Kyoto University, Japan (Prof. Masahiro Murakami)
2017–2018          JSPS Research Fellow, California Institute of Technology, USA (Prof. Gregory C. Fu) and The University of Tokyo, Japan (Prof. Masayuki Inoue)
2018–2021          Assistant Professor, Kyoto University, Japan (Prof. Masahiro Murakami)
2021–                                                  Assistant Professor, Hokkaido University, Japan

研究内容:光エネルギーを利用した革新的分子変換手法の開発

論文の概要

アセトニトリル中、4-CzIPN、トリ(t-ブチル)ホスフィン(1)存在下、1・HBF4と末端アルキン2に室温で青色光を照射したところ、環状ホスホニウム塩3が得られた(図2A)。本反応はヒドロキシ基(2a)、シリル基(2b)、カルボキシ基(2c)、エステル(2d)など様々な置換基をもつ末端アルキンに対して適用可能である。

対照実験および重水素標識実験の結果から、次の反応機構が提唱された(図2B)。まず光触媒による1の酸化で生成したラジカルカチオンAがアルキン末端を攻撃し、Bが生成する。反応性が高いsp2炭素ラジカルがt-Bu基の水素を引き抜きCが生成した後、1,2-リン転位により三級ラジカルDを与える。続く環化、光触媒による還元、プロトン化により3が生成する。

1,2-リン転位については、量子化学計算を用いてより詳細に調べられた(図2C)。DFT計算により、C(1)–P結合の開裂とC(2)–P結合の形成が協奏的に進行する反応経路と、擬中間体10を経由して段階的に進行する反応経路を比較した。その結果、後者の経路が有利であることが示された。また、NBO解析により10のアルケン部分は電子的にほぼ中性で、正電荷のほとんどがホスフィンラジカルカチオン部分に局在することが示された。この結果は、2つのフラグメント間の電子的相互作用が小さいことを表す。さらに、IGMH解析とAtoms-in-molecules解析により、2つのフラグメント間にはたらく複数のvan der Waals相互作用の存在が示唆された(詳細は論文を参照されたい)。これらの結果に基づき、1,2-リン転位はvan der Waals錯体10を経由して段階的に進行すると結論づけられた。

図2. (A) 基質適用範囲 (B) 推定反応機構 (C) 1,2-リン転位の反応経路比較

以上、トリ(t-ブチル)ホスフィンと末端アルキンの1,2-リン転位を伴った[3+2]付加環化反応が開発された。今後、ラジカル1,2-リン転位を用いた反応開発の加速が期待される。

参考文献

  1. Wu, X.; Ma, Z.; Feng, T.; Zhu, C. Radical-Mediated Rearrangements: Past, Present, and Future. Chem. Soc. Rev. 2021, 50, 11577–11613. DOI: 10.1039/D1CS00529D
  2. Hodgson, D. M.; Bebbington, M. W. P.; Willis, P. 2-Azabenzonorbornanes from 7-Azabenzonorbornanols by a Nitrogen-Directed Neophyl-Type Radical Rearrangement. Org. Lett. 2002, 4, 4353–4356. DOI: 10.1021/ol027039o
  3. Slaugh, L. H.; Mullineaux, R. D.; Raley, J. H. High Temperature Reactions of Iodine with Hydrocarbons. III. Rearrangement of Aliphatic Free Radicals. J. Am. Chem. Soc. 1963, 85, 3180–3183. DOI: 10.1021/ja00903a029
  4. Zhao, Q.; Ji, X.-S.; Gao, Y.-Y.; Hao, W.-J.; Zhang, K.-Y.; Tu, S.-J.; Jiang, B. Merging “Anti-Baldwin” 3-Exo-Dig Cyclization with 1,2-Alkynyl Migration for Radical Alkylalkynylation of Unactivated Olefins. Org. Lett. 2018, 20, 3596–3600. DOI: 10.1021/acs.orglett.8b01382
  5. Deguchi, M.; Fujiya, A.; Yamaguchi, E.; Tada, N.; Uno, B.; Itoh, A. Organic Dye-Catalyzed Radical Ring Expansion Reaction. RSC Adv. 2018, 8, 15825–15830. DOI: 1039/C8RA02383B
  6. Giese, B.; Gröninger, K. S.; Witzel, T.; Korth, H.-G.; Sustmann, R. Synthesis of 2-Deoxy Sugars. Angew. Chem., Int. Ed. 1987, 26, 233–234. DOI: 10.1002/anie.198702331
  7. Kaiser, D.; Noble, A.; Fasano, V.; Aggarwal, V. K. 1,2-Boron Shifts of β-Boryl Radicals Generated from Bis-Boronic Esters Using Photoredox Catalysis. J. Am. Chem. Soc. 2019, 141, 14104–14109. DOI: 10.1021/jacs.9b07564
  8. Tan, E. W.; Chan, B.; Blackman, A. G. A Polar Effects Controlled Enantioselective 1,2-Chlorine Atom Migration via a Chlorine-Bridged Radical Intermediate. Am. Chem. Soc. 2002, 124, 2078–2079. DOI: 10.1021/ja011129r
  9. (a) Masuda, Y.; Tsuda, H.; Murakami, M. Photoinduced Dearomatizing Three‐Component Coupling of Arylphosphines, Alkenes, and Water. Angew. Chem., Int. Ed. 2021, 60, 3551–3555. DOI: 10.1002/anie.202013215 (b) Masuda, Y.; Ikeshita, D.; Murakami, M. Photocatalytic Cycloaddition Reaction of Triarylphosphines with Alkynes Forming Cyclic Phosphonium Salts. Chem. Lett. 2021, 50, 1691–1694. DOI: 10.1246/cl.210361 (c) Masuda, Y.; Uno, M.; Murakami, M. Photoinduced Reaction of Triarylphosphines with Alkenes Forming Fused Tricyclic Phosphonium Salts. Org. Lett. 2021, 23, 8445–8449. DOI: 10.1021/acs.orglett.1c03168 (d) Ikeshita, D.; Masuda, Y.; Ishida, N.; Murakami, M. Photoinduced Hydrophosphination of Terminal Alkynes with Tri(o-tolyl)phosphine: Synthesis of Alkenylphosphonium Salts. Org. Lett. 2022, 24, 2504–2508. DOI: 10.1021/acs.orglett.2c00634

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. アンモニアを室温以下で分解できる触媒について
  2. シェールガスにかかわる化学物質について
  3. 文具に凝るといふことを化学者もしてみむとてするなり⑥:実験室でも…
  4. シクロファン+ペリレンビスイミドで芳香環を認識
  5. 化学者のためのエレクトロニクス講座~めっきの原理編~
  6. マテリアルズ・インフォマティクスの導入・活用・推進におけるよくあ…
  7. 大学院生のつぶやき:研究助成の採択率を考える
  8. シス型 ゲラニルゲラニル二リン酸?

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ナノの世界の交通事情~セルラーゼも渋滞する~
  2. ノーベル化学賞田中さん 富山2大学の特任教授に
  3. トーンカーブをいじって画像加工を見破ろう
  4. アルカロイドの科学 生物活性を生みだす物質の探索から創薬の実際まで
  5. 高分子材料におけるマテリアルズ・インフォマティクスの活用とは?
  6. 有機合成で発生する熱量はどのくらい?EasyMax HFCal
  7. マテリアルズ・インフォマティクスにおける高次元ベイズ最適化の活用-パラメーター数が多い条件最適化テーマに対応したmiHub新機能もご紹介-
  8. (-)-ウシクライドAの全合成と構造決定
  9. エナンチオ選択的付加反応による光学活性ピペリジン誘導体の合成
  10. 動画でわかる! 「575化学実験」実践ガイド

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年12月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

“見た目はそっくり、中身は違う”C-グリコシド型擬糖鎖/複合糖質を開発

第598回のスポットライトリサーチは、九州大学大学院薬学府(平井研究室)博士後期課程3年の森山 貴博…

触媒化学との「掛け算」によって展開される広範な研究

前回の記事でご紹介したとおり、触媒化学融合研究センター(触媒センター)では「掛け…

【Q&Aシリーズ❸ 技術者・事業担当者向け】 マイクロ波プロセスのスケールアップについて

<内容>※本セミナーは、技術者および事業担当者向けです。今年に入って全3回に…

「産総研・触媒化学融合研究センター」ってどんな研究所?

2013年に産総研内に設立された触媒化学融合研究センターは、「触媒化学」を中心に据えつつ、他分野と「…

低い電位で多電子移動を引き起こす「ドミノレドックス反応」とは!?

第597回のスポットライトリサーチは、北海道大学大学院総合化学院 有機化学第一研究室(鈴木孝紀研)の…

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2024/03/06 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

フッ素の特性が織りなす分子変換・材料化学(CSJカレントレビュー:47)

(さらに…)…

日本薬学会第144回年会「有機合成化学の若い力」を開催します!

卒業論文などは落ち着いた所が多いでしょうか。入試シーズンも終盤に差し掛かり、残すところは春休…

ホウ酸団子のはなし

Tshozoです。暇を見つけては相変わらず毎日ツイッターでネタ探しをしているのですが、その中で下…

活性酸素を効率よく安定に生成できる分子光触媒 〜ポルフィリンと分子状タングステン酸化物を複合化〜

第596回のスポットライトリサーチは、東京大学 大学院工学系研究科(山口研究室)修士課程 2年の山口…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP