[スポンサーリンク]

化学者のつぶやき

世界初!ラジカル1,2-リン転位

[スポンサーリンク]

1,2-リン転位を伴うトリ(tブチル)ホスフィンと末端アルキンの[3+2]付加環化反応が報告された。本反応を用いて様々な官能基をもつ末端アルキンから環状ホスホニウム塩を合成できる。

ラジカル1,2-転位反応

転位反応は化学結合の切断と形成を制御し、分子骨格を変化させる最も有用な反応のひとつである。カチオン経由の転位反応が多くを占めるが、近年、ラジカル化学の発展に伴い、ラジカル転位反応が注目される[1]。アルキルラジカルの1,2-転位反応では、熱力学的により安定なラジカルを生成するようにβ-置換基が隣接位に移動する。これまでにアリール基[2]、アルケニル基[3]、アルキニル基[4]、カルボニル基[5]などの移動をともなう炭素原子の1,2-転位反応が数多く報告されてきた(図1A)。一方で、酸素[6]やホウ素[7]、ハロゲン[8]等のヘテロ原子のラジカル1,2-転位反応は報告例が少なく、リンの1,2-転位反応は未だ報告されていない。

これまで著者らは、アルキンまたはアルケンとトリアリールホスフィンのC–P結合形成反応を開発してきた[9]。分子内水素原子移動(HAT)を利用した例として、2022年、トリ(o-トリル)ホスフィンによる末端アルキンのヒドロホスフィン化反応を報告した(図1B)[9d]。この反応では、光触媒により酸化されたホスフィンラジカルカチオンが末端アルキンへ付加した後、分子内HATによって安定なベンジルラジカルを生じる。その後一電子還元とプロトン化を経て、アルケニルホスホニウム塩を得る。

今回著者らは、1,2-リン転位を伴ったトリ(t-ブチル)ホスフィンと末端アルキンの[3+2]付加環化反応を報告した(図1C)。先行研究と同様にラジカルカチオンの付加と分子内HATにより一級ラジカルが生じた後、van der Waals錯体を経る1,2-リン転位により、環状ホスホニウム塩を与える反応機構が提唱されている。

図1. (A) ラジカル1,2-転位反応 (B) 先行研究 (C) 本研究

“Photocatalytic 1,2-Phosphorus-Migrative [3 + 2] Cycloaddition of Tri(tbutyl)phosphine with Terminal Alkynes”

Masuda, Y.; Ikeshita, D.; Higashida, K.; Yoshida, M.; Ishida, N.; Murakami, M.; Sawamura, M.  J. Am. Chem. Soc. 2023, 145, 19060–19066.

DOI: 10.1021/jacs.3c06760

論文著者の紹介

研究者:Masaya Sawamura (澤村正也)

研究者の経歴:

1981–1984                B.Sc., Kyoto University, Japan
1984–1989          Ph.D., Kyoto University, Japan (Prof. Yoshihiko Ito)
1989–1993          Assistant Professor, Kyoto University, Japan (Prof. Yoshihiko Ito)
1993–1994          Visiting Researcher, Harvard University, USA (Prof. Stuart L. Schreiber)
1995                       Assistant Professor, Tokyo Institute of Technology, Japan (Prof. Eiichi Nakamura)
1995                                                    Assistant Professor, The University of Tokyo, Japan (Prof. Eiichi Nakamura)
1996                                                    Lecturer, The University of Tokyo, Japan (Prof. Eiichi Nakamura)
1997–2001                                       Associate Professor, The University of Tokyo, Japan (Prof. Eiichi Nakamura)
2001–                                                  Professor, Hokkaido University, Japan

研究内容:有機合成触媒の分子デザイン、新規触媒反応の開発、触媒的不斉合成法の開発、触媒反応機構の理論的解明

研究者:Yusuke Masuda (増田侑亮)

研究者の経歴:

2009–2012                                       B.Sc., Kyoto University, Japan
2013–2017          Ph.D., Kyoto University, Japan (Prof. Masahiro Murakami)
2017–2018          JSPS Research Fellow, California Institute of Technology, USA (Prof. Gregory C. Fu) and The University of Tokyo, Japan (Prof. Masayuki Inoue)
2018–2021          Assistant Professor, Kyoto University, Japan (Prof. Masahiro Murakami)
2021–                                                  Assistant Professor, Hokkaido University, Japan

研究内容:光エネルギーを利用した革新的分子変換手法の開発

論文の概要

アセトニトリル中、4-CzIPN、トリ(t-ブチル)ホスフィン(1)存在下、1・HBF4と末端アルキン2に室温で青色光を照射したところ、環状ホスホニウム塩3が得られた(図2A)。本反応はヒドロキシ基(2a)、シリル基(2b)、カルボキシ基(2c)、エステル(2d)など様々な置換基をもつ末端アルキンに対して適用可能である。

対照実験および重水素標識実験の結果から、次の反応機構が提唱された(図2B)。まず光触媒による1の酸化で生成したラジカルカチオンAがアルキン末端を攻撃し、Bが生成する。反応性が高いsp2炭素ラジカルがt-Bu基の水素を引き抜きCが生成した後、1,2-リン転位により三級ラジカルDを与える。続く環化、光触媒による還元、プロトン化により3が生成する。

1,2-リン転位については、量子化学計算を用いてより詳細に調べられた(図2C)。DFT計算により、C(1)–P結合の開裂とC(2)–P結合の形成が協奏的に進行する反応経路と、擬中間体10を経由して段階的に進行する反応経路を比較した。その結果、後者の経路が有利であることが示された。また、NBO解析により10のアルケン部分は電子的にほぼ中性で、正電荷のほとんどがホスフィンラジカルカチオン部分に局在することが示された。この結果は、2つのフラグメント間の電子的相互作用が小さいことを表す。さらに、IGMH解析とAtoms-in-molecules解析により、2つのフラグメント間にはたらく複数のvan der Waals相互作用の存在が示唆された(詳細は論文を参照されたい)。これらの結果に基づき、1,2-リン転位はvan der Waals錯体10を経由して段階的に進行すると結論づけられた。

図2. (A) 基質適用範囲 (B) 推定反応機構 (C) 1,2-リン転位の反応経路比較

以上、トリ(t-ブチル)ホスフィンと末端アルキンの1,2-リン転位を伴った[3+2]付加環化反応が開発された。今後、ラジカル1,2-リン転位を用いた反応開発の加速が期待される。

参考文献

  1. Wu, X.; Ma, Z.; Feng, T.; Zhu, C. Radical-Mediated Rearrangements: Past, Present, and Future. Chem. Soc. Rev. 2021, 50, 11577–11613. DOI: 10.1039/D1CS00529D
  2. Hodgson, D. M.; Bebbington, M. W. P.; Willis, P. 2-Azabenzonorbornanes from 7-Azabenzonorbornanols by a Nitrogen-Directed Neophyl-Type Radical Rearrangement. Org. Lett. 2002, 4, 4353–4356. DOI: 10.1021/ol027039o
  3. Slaugh, L. H.; Mullineaux, R. D.; Raley, J. H. High Temperature Reactions of Iodine with Hydrocarbons. III. Rearrangement of Aliphatic Free Radicals. J. Am. Chem. Soc. 1963, 85, 3180–3183. DOI: 10.1021/ja00903a029
  4. Zhao, Q.; Ji, X.-S.; Gao, Y.-Y.; Hao, W.-J.; Zhang, K.-Y.; Tu, S.-J.; Jiang, B. Merging “Anti-Baldwin” 3-Exo-Dig Cyclization with 1,2-Alkynyl Migration for Radical Alkylalkynylation of Unactivated Olefins. Org. Lett. 2018, 20, 3596–3600. DOI: 10.1021/acs.orglett.8b01382
  5. Deguchi, M.; Fujiya, A.; Yamaguchi, E.; Tada, N.; Uno, B.; Itoh, A. Organic Dye-Catalyzed Radical Ring Expansion Reaction. RSC Adv. 2018, 8, 15825–15830. DOI: 1039/C8RA02383B
  6. Giese, B.; Gröninger, K. S.; Witzel, T.; Korth, H.-G.; Sustmann, R. Synthesis of 2-Deoxy Sugars. Angew. Chem., Int. Ed. 1987, 26, 233–234. DOI: 10.1002/anie.198702331
  7. Kaiser, D.; Noble, A.; Fasano, V.; Aggarwal, V. K. 1,2-Boron Shifts of β-Boryl Radicals Generated from Bis-Boronic Esters Using Photoredox Catalysis. J. Am. Chem. Soc. 2019, 141, 14104–14109. DOI: 10.1021/jacs.9b07564
  8. Tan, E. W.; Chan, B.; Blackman, A. G. A Polar Effects Controlled Enantioselective 1,2-Chlorine Atom Migration via a Chlorine-Bridged Radical Intermediate. Am. Chem. Soc. 2002, 124, 2078–2079. DOI: 10.1021/ja011129r
  9. (a) Masuda, Y.; Tsuda, H.; Murakami, M. Photoinduced Dearomatizing Three‐Component Coupling of Arylphosphines, Alkenes, and Water. Angew. Chem., Int. Ed. 2021, 60, 3551–3555. DOI: 10.1002/anie.202013215 (b) Masuda, Y.; Ikeshita, D.; Murakami, M. Photocatalytic Cycloaddition Reaction of Triarylphosphines with Alkynes Forming Cyclic Phosphonium Salts. Chem. Lett. 2021, 50, 1691–1694. DOI: 10.1246/cl.210361 (c) Masuda, Y.; Uno, M.; Murakami, M. Photoinduced Reaction of Triarylphosphines with Alkenes Forming Fused Tricyclic Phosphonium Salts. Org. Lett. 2021, 23, 8445–8449. DOI: 10.1021/acs.orglett.1c03168 (d) Ikeshita, D.; Masuda, Y.; Ishida, N.; Murakami, M. Photoinduced Hydrophosphination of Terminal Alkynes with Tri(o-tolyl)phosphine: Synthesis of Alkenylphosphonium Salts. Org. Lett. 2022, 24, 2504–2508. DOI: 10.1021/acs.orglett.2c00634
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. イグノーベル化学賞2018「汚れ洗浄剤としてヒトの唾液はどれほど…
  2. 誰もが憧れる天空の化学研究室
  3. 第37回反応と合成の進歩シンポジウムに参加してきました。
  4. クロロラジカルHAT協働型C-Hクロスカップリングの開発
  5. マテリアルズ・インフォマティクス解体新書:ビジネスリーダーのため…
  6. 原子状炭素等価体を利用してα,β-不飽和アミドに一炭素挿入する新…
  7. 生きたカタツムリで発電
  8. 有機合成化学協会誌2025年8月号:ヒドラジド・アライン・有機触…

注目情報

ピックアップ記事

  1. JEOL RESONANCE「UltraCOOL プローブ」: 極低温で感度MAX! ②
  2. マリア フリッツァニ-ステファノポウロス Maria Flytzani-Stephanopoulos
  3. 中国産ウナギから合成抗菌剤、厚労省が検査義務づけ
  4. 第143回―「単分子エレクトロニクスと化学センサーの研究」Nongjian (NJ) Tao 教授
  5. 【四国化成ホールディングス】新卒採用情報(2026卒)
  6. 金大大学院、ナノ微粒子開発 医薬品や塗料などに応用も
  7. 巧みに設計されたホウ素化合物と可視光からアルキルラジカルを発生させる
  8. ペプシとヒドラゾンが作る枝分かれフッ素化合物
  9. ナノ粒子の安全性、リスク評価と国際標準化の最新動向【終了】
  10. スズアセタールを用いる選択的変換 Selective Transformation with Tin Acetal

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年12月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

【太陽ホールディングス】新卒採用情報(2027卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

欧米化学メーカーのR&D戦略について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、欧米化…

有馬温泉でラドン泉の放射線量を計算してみた【化学者が行く温泉巡りの旅】

有馬温泉は、日本の温泉で最も高い塩分濃度を持ち黄褐色を呈する金泉と二酸化炭素と放射性のラドンを含んだ…

アミンホウ素を「くっつける」・「つかう」 ~ポリフルオロアレーンの光触媒的C–Fホウ素化反応と鈴木・宮浦カップリングの開発~

第684回のスポットライトリサーチは、名古屋工業大学大学院工学研究科(中村研究室)安川直樹 助教と修…

第56回ケムステVシンポ「デバイスとともに進化する未来の化学」を開催します!

第56回ケムステVシンポの会告を致します。3年前(32回)・2年前(41回)・昨年(49回)…

骨粗鬆症を通じてみる薬の工夫

お久しぶりです。以前記事を挙げてから1年以上たってしまい、時間の進む速さに驚いていま…

インドの農薬市場と各社の事業戦略について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、インド…

【味の素ファインテクノ】新卒採用情報(2027卒)

当社は入社時研修を経て、先輩指導のもと、実践(※)の場でご活躍いただきます。…

味の素グループの化学メーカー「味の素ファインテクノ社」を紹介します

食品会社として知られる味の素社ですが、味の素ファインテクノ社はその味の素グループ…

味の素ファインテクノ社の技術と社会貢献

味の素ファインテクノ社は、電子材料の分野において独創的な製品を開発し、お客様の中にイノベーションを起…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP