[スポンサーリンク]

化学者のつぶやき

ペプチドのらせんフォールディングを経る多孔性配位高分子の創製

[スポンサーリンク]

2014年、東京大学の藤田誠・澤田智久らは、短鎖ペプチドをリンカーとする配位高分子錯体を合成し、その構造をX線結晶構造解析によって決定した。ペプチドは配位重合を経てらせん配座へとフォールディングされ、3次元配列することで巨大ナノチャネル(> 2nm)を形成する。ナノ孔内には様々なゲスト(アニオン、有機分子、生体分子オリゴマーなど)が包摂可能であり、また単結晶状態を保ったままゲスト交換も起こしうる。光学活性化合物の不斉認識も可能である。

“Coordination-Driven Folding and Assembly of a Short Peptide into a Protein-like Two-Nanometer-Sized Channel”
Sawada, T.*; Matsumoto, A.; Fujita, M.* Angew. Chem. Int. Ed. 2014, 53, 7228. DOI: 10.1002/anie.201403506(アイキャッチ画像は本論文より引用)

問題設定と解決した点

タンパク質は連続繰り返し配列を上手く活用することで、少ない情報量で特定のナノ構造を生み出している[1]。短鎖ペプチドを用いるソフトマテリアルのボトムアップ合成系においても、繰り返し配列の活用は同様に合理的だと考えられる。しかしながらペプチド化合物は配座柔軟性を理由に、well-definedなナノ構造体を生み出す目的に用いることは難しい。ペプチドの自己組織化過程はゲル・ファイバー・ナノ粒子を与えることがほとんど[2]であり、結晶性化合物を与える事例はごく希少である。

著者らは本論文で、らせんペプチドのフォールディングとネットワーク形成を協働的に進めることで、タンパク様結晶性ナノ構造体を与える戦略を提案している。

技術や手法のキモ

配位性高分子合成の研究領域では、結晶性化合物を得るために芳香環主体の剛直リンカーを設計・合成して用いることが主流であった。しかしながら近年ではリンカー構造に柔軟性を持たせる研究が先端分野の一つになっている。このような高分子化合物は結晶化しづらいため、構造決定が困難になる。

構造化学的に意味のあるアウトプットに結びつけるには、配座柔軟性と剛直性の絶妙なバランスを備えるリンカーを選定する必要がある。ここではコラーゲンの部分構造であるGly-Pro-Pro配列を備えるリンカーを選定したことが鍵である。この配列が重合することで、ポリプロリンIIらせん(PII helix)と呼ばれる剛直構造が形成される(コラーゲンはこの高分子ペプチド鎖が3重らせんを組んだものに相当する)[3]。

コラーゲンの三重らせん構造(PDB,Molecule of the Monthより引用)

主張の有効性検証

①配位高分子形成が生み出すリンカーのフォールディング

末端を3-ピリジル基で修飾した配位性Gly-Pro-Proリンカー1を液相法で合成した。AgBF4との錯形成をエタノール/水, 10℃の条件で行うと、無色塊状結晶[AgBF41]nが38%収率で得られた。これはX線回折によって原子レベルでの構造解析が可能であった。

図は冒頭論文より引用・改変

リンカー1単独では主に3通りの配座を取ることが1H NMRおよびCD測定から確認された。その一方で、錯体のX線構造から各ペプチド結合のラマチャンドランプロットを求めると、短鎖ペプチドリンカーはPII helix、トランスアミド配座(実測値はφ=-66o~-108o, ψ=150o~172o, ω=180o。典型値はφ=-75o, ψ=175o, ω=180o)に固定されていることが確認された。これは系中フォールディングされたペプチドらせんを材料成分として用いた初めての例である。

全体としてはピリジン環同士のπスタッキング安定化によって、3次元ハニカム構造を取っている。c軸方向に2種類のキラルチャネル孔が存在する。大サイズ孔はらせん壁面となっており、直径2.2nm。溶媒・カウンターアニオンで満たされているが、disorderのため観測されない。

②ホスト-ゲスト化学への展開

カウターアニオンであるBF4は、single-crystal-to-single-crystal様式で、PF6、CF3SO3などに交換されうる。これらのカウンターアニオンを有する結晶は直接には合成不可能なので、BF4は結晶化に重要な役割を担っていることが示唆される。

ラセミのBINOL(10 mM)を結晶にアプライしてゲスト包摂を起こし、NaCl水添加によって結晶を壊してBINOLを回収する。NMR定量を行なうと、大チャネルらせん1ピッチあたり2分子のBINOLが取り込まれていることが分かった。また回収されたBINOLをキラルHPLCで分析すると、R体の増幅が観測された。D体ペプチド結晶を用いた実験ではS体の増幅が確認される。BINOL溶液濃度を増すとより多くの分子が取り込まれるが、増幅度は低くなる。チャネルサイズよりもゲストのサイズが遥かに小さいにもかかわらず、この不斉包摂が見られる事実からも、チャネル壁面での効率的な不斉認識が肝と考えられる。

また、D-グルコースを5つ繋げたマルトペンタオース(20 mM)を包摂させると、大チャネルらせん2ピッチあたり、4~5個の分子が取り込まれる。溶媒を緩衝液に変えると非効率になること、分子動力学シミュレーションなどから、壁面との複数の水素結合が関与していることが示唆される。

議論すべき点

  • 結晶化重合によって、ペプチドの配座を制限し固定するという考え方は斬新。ペプチドの中でも比較的配座規制の大きな配列を使っているとは言え、どこまで柔軟なリンカーが使用可能かは気になる点。
  • 実際に多孔性材料へと活用するにはまだまだ安定性面で課題があるように見える。一般に金属-リンカー間の結合を強くしていくと安定な構造体になるが、反面、結晶性が悪くなるため構造決定に難航するというジレンマがあるため。また、柔軟なリンカーほど全体としての強度には反映されづらいと思われる。

次に読むべき論文は?

  • 本研究の後続展開[4]。適度な柔軟性・剛直性のある屈曲リンカー構造の特徴を活かして[2]カテナンや[4]カテナンなどのアプローチ困難な構造取得にも成功している。

参考文献

  1. Kajava. A. V. J. Struct. Biol. 2012, 179, 279. doi:10.1016/j.jsb.2011.08.009
  2. Kushner, A. M.; Guan, Z. Angew. Chem. Int. Ed. 2011, 50, 9026. DOI: 10.1002/anie.201006496
  3. PDB: 1BKV
  4. (a) Sawada, T.; Yamagami, M.; Ohara, K.; Yamaguchi, K.; Fujita, M. Angew. Chem. Int. Ed. 2016, 55, 4519. DOI: 10.1002/anie.201600480 (b) Sawada, T.; Yamagami, M.; Akinaga, S.; Miyaji, T.; Fujita, M. Chem. Asian J. 2017, 12, 1715. doi:10.1002/asia.201700458 (c) Sawada, T.; Inomata, Y.; Yamagami, M.; Fujita, M. Chem. Lett. 2017, 46, 1119. doi:10.1246/cl.170438

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 【読者特典】第92回日本化学会付設展示会を楽しもう!
  2. C70の中に水分子を閉じ込める
  3. フラーレン:発見から30年
  4. 化学研究ライフハック:情報収集の機会損失を減らす「Read It…
  5. Wiiで育てる科学の心
  6. 個性あふれるTOC大集合!
  7. Independence Day
  8. 光触媒を用いたC末端選択的な脱炭酸型bioconjugation…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. エーザイ、抗体医薬の米社を390億円で買収完了
  2. 株式会社ジーシーってどんな会社?
  3. 正宗・バーグマン反応 Masamune-Bergman Reaction
  4. ハラスメントから自分を守るために。他人を守るために【アメリカで Ph.D. を取る –オリエンテーションの巻 その 2-】
  5. 超若手科学者の発表会、サイエンス・インカレの優秀者インタビュー
  6. Dead Endを回避せよ!「全合成・極限からの一手」⑤(解答編)
  7. 真理を追求する –2017年度ロレアル-ユネスコ女性科学者日本奨励賞–
  8. キラルLewis酸触媒による“3員環経由4員環”合成
  9. NMRの基礎知識【測定・解析編】
  10. 【速報】2015年ノーベル生理学・医学賞ー医薬品につながる天然物化学研究へ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年9月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

注目情報

最新記事

日本薬学会  第143年会 付設展示会ケムステキャンペーン Part 1

さて、日本化学会春季年会の付設展示会ケムステキャンペーンを3回にわたり紹介しましたが、ほぼ同時期に行…

推進者・企画者のためのマテリアルズ・インフォマティクスの組織推進の進め方 -組織で利活用するための実施例を紹介-

開催日:2023/03/22 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

日本化学会 第103春季年会 付設展示会ケムステキャンペーン Part3

Part 1・Part2に引き続き第三弾。日本化学会年会の付設展示会に出展する企業とのコラボです。…

第2回「Matlantis User Conference」

株式会社Preferred Computational Chemistryは、4月21日(金)に第2…

日本化学会 第103春季年会 付設展示会ケムステキャンペーン Part2

前回のPart 1に引き続き第二弾。日本化学会年会の付設展示会に出展する企業とのコラボです。…

マテリアルズ・インフォマティクスにおける従来の実験計画法とベイズ最適化の比較

開催日:2023/03/29 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

日本化学会 第103春季年会 付設展示会ケムステキャンペーン Part1

待ちに待った対面での日本化学会春季年会。なんと4年ぶりなんですね。今年は…

グアニジニウム/次亜ヨウ素酸塩触媒によるオキシインドール類の立体選択的な酸化的カップリング反応

第493回のスポットライトリサーチは、東京農工大学院 工学府生命工学専攻 生命有機化学講座(長澤・寺…

カーボンニュートラルへの化学工学: CO₂分離回収,資源化からエネルギーシステム構築まで

概要いま我々は,カーボンニュートラルの実現のために,最も合理的なエネルギー供給と利用の選…

クリック反応を用いて、機能性分子を持つイナミド類を自在合成!

第492 回のスポットライトリサーチは、岐阜薬科大学 合成薬品製造学研究室 (伊…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP