[スポンサーリンク]

化学者のつぶやき

ペプチドのらせんフォールディングを経る多孔性配位高分子の創製

[スポンサーリンク]

2014年、東京大学の藤田誠・澤田智久らは、短鎖ペプチドをリンカーとする配位高分子錯体を合成し、その構造をX線結晶構造解析によって決定した。ペプチドは配位重合を経てらせん配座へとフォールディングされ、3次元配列することで巨大ナノチャネル(> 2nm)を形成する。ナノ孔内には様々なゲスト(アニオン、有機分子、生体分子オリゴマーなど)が包摂可能であり、また単結晶状態を保ったままゲスト交換も起こしうる。光学活性化合物の不斉認識も可能である。

“Coordination-Driven Folding and Assembly of a Short Peptide into a Protein-like Two-Nanometer-Sized Channel”
Sawada, T.*; Matsumoto, A.; Fujita, M.* Angew. Chem. Int. Ed. 2014, 53, 7228. DOI: 10.1002/anie.201403506(アイキャッチ画像は本論文より引用)

問題設定と解決した点

タンパク質は連続繰り返し配列を上手く活用することで、少ない情報量で特定のナノ構造を生み出している[1]。短鎖ペプチドを用いるソフトマテリアルのボトムアップ合成系においても、繰り返し配列の活用は同様に合理的だと考えられる。しかしながらペプチド化合物は配座柔軟性を理由に、well-definedなナノ構造体を生み出す目的に用いることは難しい。ペプチドの自己組織化過程はゲル・ファイバー・ナノ粒子を与えることがほとんど[2]であり、結晶性化合物を与える事例はごく希少である。

著者らは本論文で、らせんペプチドのフォールディングとネットワーク形成を協働的に進めることで、タンパク様結晶性ナノ構造体を与える戦略を提案している。

技術や手法のキモ

配位性高分子合成の研究領域では、結晶性化合物を得るために芳香環主体の剛直リンカーを設計・合成して用いることが主流であった。しかしながら近年ではリンカー構造に柔軟性を持たせる研究が先端分野の一つになっている。このような高分子化合物は結晶化しづらいため、構造決定が困難になる。

構造化学的に意味のあるアウトプットに結びつけるには、配座柔軟性と剛直性の絶妙なバランスを備えるリンカーを選定する必要がある。ここではコラーゲンの部分構造であるGly-Pro-Pro配列を備えるリンカーを選定したことが鍵である。この配列が重合することで、ポリプロリンIIらせん(PII helix)と呼ばれる剛直構造が形成される(コラーゲンはこの高分子ペプチド鎖が3重らせんを組んだものに相当する)[3]。

コラーゲンの三重らせん構造(PDB,Molecule of the Monthより引用)

主張の有効性検証

①配位高分子形成が生み出すリンカーのフォールディング

末端を3-ピリジル基で修飾した配位性Gly-Pro-Proリンカー1を液相法で合成した。AgBF4との錯形成をエタノール/水, 10℃の条件で行うと、無色塊状結晶[AgBF41]nが38%収率で得られた。これはX線回折によって原子レベルでの構造解析が可能であった。

図は冒頭論文より引用・改変

リンカー1単独では主に3通りの配座を取ることが1H NMRおよびCD測定から確認された。その一方で、錯体のX線構造から各ペプチド結合のラマチャンドランプロットを求めると、短鎖ペプチドリンカーはPII helix、トランスアミド配座(実測値はφ=-66o~-108o, ψ=150o~172o, ω=180o。典型値はφ=-75o, ψ=175o, ω=180o)に固定されていることが確認された。これは系中フォールディングされたペプチドらせんを材料成分として用いた初めての例である。

全体としてはピリジン環同士のπスタッキング安定化によって、3次元ハニカム構造を取っている。c軸方向に2種類のキラルチャネル孔が存在する。大サイズ孔はらせん壁面となっており、直径2.2nm。溶媒・カウンターアニオンで満たされているが、disorderのため観測されない。

②ホスト-ゲスト化学への展開

カウターアニオンであるBF4は、single-crystal-to-single-crystal様式で、PF6、CF3SO3などに交換されうる。これらのカウンターアニオンを有する結晶は直接には合成不可能なので、BF4は結晶化に重要な役割を担っていることが示唆される。

ラセミのBINOL(10 mM)を結晶にアプライしてゲスト包摂を起こし、NaCl水添加によって結晶を壊してBINOLを回収する。NMR定量を行なうと、大チャネルらせん1ピッチあたり2分子のBINOLが取り込まれていることが分かった。また回収されたBINOLをキラルHPLCで分析すると、R体の増幅が観測された。D体ペプチド結晶を用いた実験ではS体の増幅が確認される。BINOL溶液濃度を増すとより多くの分子が取り込まれるが、増幅度は低くなる。チャネルサイズよりもゲストのサイズが遥かに小さいにもかかわらず、この不斉包摂が見られる事実からも、チャネル壁面での効率的な不斉認識が肝と考えられる。

また、D-グルコースを5つ繋げたマルトペンタオース(20 mM)を包摂させると、大チャネルらせん2ピッチあたり、4~5個の分子が取り込まれる。溶媒を緩衝液に変えると非効率になること、分子動力学シミュレーションなどから、壁面との複数の水素結合が関与していることが示唆される。

議論すべき点

  • 結晶化重合によって、ペプチドの配座を制限し固定するという考え方は斬新。ペプチドの中でも比較的配座規制の大きな配列を使っているとは言え、どこまで柔軟なリンカーが使用可能かは気になる点。
  • 実際に多孔性材料へと活用するにはまだまだ安定性面で課題があるように見える。一般に金属-リンカー間の結合を強くしていくと安定な構造体になるが、反面、結晶性が悪くなるため構造決定に難航するというジレンマがあるため。また、柔軟なリンカーほど全体としての強度には反映されづらいと思われる。

次に読むべき論文は?

  • 本研究の後続展開[4]。適度な柔軟性・剛直性のある屈曲リンカー構造の特徴を活かして[2]カテナンや[4]カテナンなどのアプローチ困難な構造取得にも成功している。

参考文献

  1. Kajava. A. V. J. Struct. Biol. 2012, 179, 279. doi:10.1016/j.jsb.2011.08.009
  2. Kushner, A. M.; Guan, Z. Angew. Chem. Int. Ed. 2011, 50, 9026. DOI: 10.1002/anie.201006496
  3. PDB: 1BKV
  4. (a) Sawada, T.; Yamagami, M.; Ohara, K.; Yamaguchi, K.; Fujita, M. Angew. Chem. Int. Ed. 2016, 55, 4519. DOI: 10.1002/anie.201600480 (b) Sawada, T.; Yamagami, M.; Akinaga, S.; Miyaji, T.; Fujita, M. Chem. Asian J. 2017, 12, 1715. doi:10.1002/asia.201700458 (c) Sawada, T.; Inomata, Y.; Yamagami, M.; Fujita, M. Chem. Lett. 2017, 46, 1119. doi:10.1246/cl.170438
cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 【日産化学 23卒/Zoomウェビナー配信!】START you…
  2. IR情報から読み解く大手化学メーカーの比較
  3. 有機合成化学協会誌2021年10月号:フッ素化反応2010-20…
  4. SciFinder Future Leaders in Chem…
  5. 合格体験記:知的財産管理技能検定~berg編~
  6. ノーベル化学賞を受けた企業人たち
  7. 第98回日本化学会春季年会 付設展示会ケムステキャンペーン Pa…
  8. ChemDraw の使い方【作図編④: 反応機構 (前編)】

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. リガンドによりCO2を選択的に導入する
  2. ダイセルよりサステナブルな素材に関する開発成果と包括的連携が発表される
  3. JSR、東大理物と包括的連携に合意 共同研究や人材育成を促進
  4. 化学者のためのエレクトロニクス入門② ~電子回路の製造工程編~
  5. むずかしいことば?
  6. 「無保護アルコールの直截的なカップリング反応」-Caltech Fu研より
  7. オーストラリア国境警備で大活躍の”あの”機器
  8. ヨアヒム・フランク Joachim Frank
  9. 亜酸化窒素 Nitrous oxide
  10. 有機合成化学協会誌2022年5月号:特集号 金属錯体が拓く有機合成

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年9月
« 8月   10月 »
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

注目情報

最新記事

ドラえもん探究ワールド 身近にいっぱい!おどろきの化学

概要「化学」への興味の芽を育むマンガ+解説書 子ども(大人も)の毎日は、「化学」とのお付き合…

データ駆動型R&D組織の実現に向けた、MIを組織的に定着させる3ステップ

開催日:2022/05/25 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

薬剤師国家試験にチャレンジ!【有機化学編その1】

2022.5.21 追記: 問3の構造式を再度訂正しました。2022.5.2…

化学知識の源、化学同人と東京化学同人

化学の専門家なら化学同人と東京化学同人の教科書や参考書を必ず一冊は購入したことがあると思います。この…

天才プログラマー タンメイが教えるJulia超入門

概要使いやすさと実行速度を兼ね備えた注目のプログラミング言語Julia.世界の天才プ…

【Spiber】新卒・中途採用情報

【会社が求める人物像】私たちの理念や取り組みに共感し、「人を大切にする」とい…

飲むノミ・マダニ除虫薬のはなし

Tshozoです。先日TVを眺めていて「かわいいワンちゃんの体をダニとノミから守るためにお薬を飲ませ…

MEDCHEM NEWS 31-2号「2020年度医薬化学部会賞」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

有機合成化学協会誌2022年5月号:特集号 金属錯体が拓く有機合成

有機合成化学協会が発行する有機合成化学協会誌、2022年5月号がオンライン公開されました。連…

高分子材料におけるマテリアルズ・インフォマティクスの活用とは?

開催日:2022/05/18 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP