[スポンサーリンク]

化学者のつぶやき

Ti触媒、結合切って繋げて二刀流!!アルコールの脱ラセミ化反応

[スポンサーリンク]

LMCTを介したTi触媒によるアルコールの光駆動型脱ラセミ化反応が報告された。単一不斉配位子を用いた二度の不斉誘導により高いエナンチオ選択性が発現する。

光駆動型触媒的脱ラセミ化反応

脱ラセミ化反応は、ラセミ体を単一のエナンチオマーに変換できる有用な不斉合成反応である。動的速度論光学分割とは異なり、原料と生成物の構造は変化しない。脱ラセミ化反応では、生成系のエントロピーが減少する点や、熱平衡による再ラセミ化が潜在的な課題である[1]。これらの課題を、光を利用して克服した初の例が、Bachらによる不斉チオキサントン触媒を用いたアレンの脱ラセミ化である(図 1Aa)[2]。チオキサントン触媒は、立体反発のより小さいエナンチオマーと優先的に水素結合を形成する。その後、相互作用したアレンと励起したチオキサントン触媒との間で三重項エネルギー移動が起こり、異性化する。本反応では、非熱平衡過程の三重項エネルギー移動を経由することで課題であった再ラセミ化を抑制した。この報告の後、Knowlesらはウレアの可視光駆動型脱ラセミ化を報告した(図 1Ab)[3]。励起されたIr触媒によりウレアが酸化された後、キラルブレンステッド塩基によるプロトン移動(PT)、キラルペプチドチオールによるHATを経て脱ラセミ化する。本反応では、二つの不斉触媒による二度の不斉誘導により、高いエナンチオ選択性を実現した。

本論文著者のZuoらは近年、Ce光触媒に着目したアルコールの変換反応を複数報告している(図1B)[4]。これらの反応ではCe錯体のLMCT(ligand to metal charge transfer)を経てアルコールからアルコキシラジカルが生成する。その後β-開裂により生じたアルキルラジカルがラジカル捕捉剤と反応する。

今回、著者らはTi触媒によるアルコキシラジカル生成を起点としたアルコールの脱ラセミ化反応を報告した(図1C)。単一の不斉Ti触媒が、アルコールのβ-開裂と再環化過程における二度の不斉誘導を実現し、高い光学純度でアルコールが得られる。

図1. (A) 光照射を駆動力とした脱ラセミ化反応 (B) 先行研究 (C) 本研究

 

“Multiplicative Enhancement of Stereoenrichment by a Single Catalyst for Deracemization of Alcohols”
Wen, L.; Ding, J.; Duan, L.; Wang, S.; An, Q.; Wang, H.; Zuo, Z.Science2023, 382, 458–464.
DOI: 10.1126/science.adj0040

論文著者の紹介

研究者: Zhiwei Zuo (左智伟)

研究者の経歴:

2007                                                    B.S., Nanjing University, China
2012                       Ph.D., Shanghai Institute of Organic Chemistry (SIOC), China (Prof. Dawei Ma)
2013–2015          Postdoc, Princeton University, USA (Prof. David W. C. MacMillan)
2015–2020          Assistant Professor, Shanghai Tech University, China
2020–                                                  Professor, Shanghai Institute of Organic Chemistry (SIOC), China

研究内容:Ce光触媒を利用したアルコキシラジカル生成法の開発

論文の概要

ヘプタン中、触媒量のTiCl4とキラルリン酸L、Na2CO3存在下、光照射(395 nm)することでラセミ体である環状アルコール1の脱ラセミ化反応が進行し、一方のエナンチオマーが選択的に得られることを見出した(図2A)。本反応は、β位にアリール基をもつ様々な環員数の2級アルコール(1a1c)に加え、α位にメチル基をもつ3級アルコール(1d)に適用できた。また、ビスオキサゾリンL4を不斉配位子に用いることで、非環状アミノアルコール2も利用可能であった。

著者らは、反応機構解明実験として、部分的に重水素化したシクロペンタノール3を脱ラセミ化した(図2B)。その結果、3の重水素化率を維持した状態で、1aと同等の立体選択性を示したことから、脱ラセミ化は水素原子移動(HAT)や段階的な酸化還元過程を経由しないことが明らかとなった。

彼らは高エナンチオ選択性を実現する不斉発現メカニズムも調査した(図 2c)。はじめにC–C結合形成過程におけるエナンチオ選択性を確認した。syn体(±)-2の脱ラセミ化反応では、反応初期に生成するanti体2の鏡像体比はほぼ一定であり(er = 75:25)、anti体は結合開裂に関与しないことが示唆された。すなわち、結合形成過程のエナンチオ選択性はer = 75:25と見積もられた。また結合開裂が進行しない暗条件下、アルデヒド4とイミン5を反応させるとanti体(+)-2が鏡像体比er = 77:23 (kR/kS比3.3:1)で生成した。次に、C–C結合開裂における立体選択性を確認した。2とラジカル捕捉剤6を光照射条件下で反応させた結果、(S)-エナンチオマーが優先的に消費されることが明らかになった(k–S/k–R比8.1:1)。これら二つの不斉誘導過程から算出される鏡像体比(er = kRk–S/kSk–R)はer = 96:4となり、本脱ラセミ化反応における2aの不斉収率(er = 97:3)と一致した。以上より、C–C結合切断/形成の各過程における不斉誘導は中程度であるものの、これらを組み合わせることで高いエナンチオ選択性を達成したことが示された。他にも、Ti(III)の生成やβ-開裂反応の関与、プロキラルなラジカル中間体を経由することが実験的に示された(論文参照)。

図2. (A) 基質適用範囲 (B) 重水素ラベル実験 (C) 不斉誘導の比率の調査実験

今回、不斉チタン触媒を用いたアルコールの脱ラセミ化が報告された。単一触媒による2つの不斉誘導で高いエナンチオ選択性を達成する本手法のコンセプトを応用した、新たな不斉触媒反応の開発が期待される。

参考文献

  1. Huang, M.; Pan, T.; Jiang, X.; Luo, S. Catalytic Deracemization Reactions. J. Am. Chem. Soc. 2023, 14, 10917–1 DOI: 10.1021/jacs.3c02622
  2. Hölzl-Hobmeier, A.; Bauer, A.; Silva, A. V.; Huber, S. M.; Bannwarth, C.; Bach, T. Catalytic Deracemization of Chiral Allenes by Sensitized Excitation with Visible Light. Nature 2018, 564, 240–243. DOI: 1038/s41586-018-0755-1
  3. Shin, N. Y.; Ryss, J. M.; Zhang, X.; Miller, S. J.; Knowles, R. R. Light-Driven Deracemization Enabled by Excited-State Electron Transfer. Science 2019, 366, 364–369. DOI: 1126/science.aay2204
  4. (a) Guo, J.; Hu, A.; Chen, Y.; Sun, J.; Tang, H.; Zuo, Z. Photocatalytic C–C Bond Cleavage and Amination of Cycloalkanols by Cerium(III) Chloride Complex. Angew. Chem., Int. Ed. 2016, 55, 15319–15322. DOI: 1002/anie.201609035 (b) Hu, A.; Chen, Y.; Guo, J.-J.; Yu, N.; An, Q.; Zuo, Z. Cerium-Catalyzed Formal Cycloaddition of Cycloalkanols with Alkenes through Dual Photoexcitation. J. Am. Chem. Soc. 2018, 140, 13580–13585. DOI: 10.1021/jacs.8b08781 (c) Zhang, K.; Chang, L.; An, Q.; Wang, X.; Zuo, Z. Dehydroxymethylation of Alcohols Enabled by Cerium Photocatalysis. J. Am. Chem. Soc. 2019, 141, 10556–10564. DOI: 10.1021/jacs.9b05932 (d) Chen, Y.; Wang, X.; He, X.; An, Q.; Zuo, Z. Photocatalytic Dehydroxymethylative Arylation by Synergistic Cerium and Nickel Catalysis. J. Am. Chem. Soc. 2021, 143, 4896–4902. DOI: 10.1021/jacs.1c00618
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 【大阪開催2月26日】 「化学系学生のための企業研究セミナー」
  2. ウクライナ危機と創薬ビルディングブロック –エナミン社のケースよ…
  3. 海外機関に訪問し、英語講演にチャレンジ!~③ いざ、機関訪問!~…
  4. SNS予想で盛り上がれ!2022年ノーベル化学賞は誰の手に?
  5. 有機合成化学協会誌2023年6月号:環状ペプチド天然物・フロキサ…
  6. 痔の薬のはなし after
  7. ポンコツ博士の海外奮闘録② 〜博士,鉄パイプを切断す〜
  8. タンパク質の定量法―紫外吸光法 Protein Quantifi…

注目情報

ピックアップ記事

  1. 環境対策と経済性を両立する電解酸化反応、創造化学が実用化実験
  2. ペロブスカイト太陽電池の学理と技術: カーボンニュートラルを担う国産グリーンテクノロジー (CSJカレントレビュー: 48)
  3. 面接官の心に刺さる志望動機、刺さらない志望動機
  4. 流れる電子ッ!壊れるピリジンッ!含窒素多環式骨格構築!
  5. ギー・ベルトラン Guy Bertrand
  6. マイクロ波プロセスの工業化 〜環境/化学・ヘルスケア・電材領域での展開と効果〜(1)
  7. 有機合成化学協会誌2019年2月号:触媒的脱水素化・官能性第三級アルキル基導入・コンプラナジン・アライン化学・糖鎖クラスター・サリチルアルデヒド型イネいもち病菌毒素
  8. C-CN結合活性化を介したオレフィンへの触媒的不斉付加
  9. 第27回 「有機化学と光化学で人工光合成に挑戦」今堀 博 教授
  10. 発見が困難なガンを放射性医薬品で可視化することに成功

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年5月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

四国化成ってどんな会社?

私たち四国化成ホールディングス株式会社は、企業理念「独創力」を掲げ、「有機合成技術」…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP