[スポンサーリンク]

化学者のつぶやき

Ti触媒、結合切って繋げて二刀流!!アルコールの脱ラセミ化反応

[スポンサーリンク]

LMCTを介したTi触媒によるアルコールの光駆動型脱ラセミ化反応が報告された。単一不斉配位子を用いた二度の不斉誘導により高いエナンチオ選択性が発現する。

光駆動型触媒的脱ラセミ化反応

脱ラセミ化反応は、ラセミ体を単一のエナンチオマーに変換できる有用な不斉合成反応である。動的速度論光学分割とは異なり、原料と生成物の構造は変化しない。脱ラセミ化反応では、生成系のエントロピーが減少する点や、熱平衡による再ラセミ化が潜在的な課題である[1]。これらの課題を、光を利用して克服した初の例が、Bachらによる不斉チオキサントン触媒を用いたアレンの脱ラセミ化である(図 1Aa)[2]。チオキサントン触媒は、立体反発のより小さいエナンチオマーと優先的に水素結合を形成する。その後、相互作用したアレンと励起したチオキサントン触媒との間で三重項エネルギー移動が起こり、異性化する。本反応では、非熱平衡過程の三重項エネルギー移動を経由することで課題であった再ラセミ化を抑制した。この報告の後、Knowlesらはウレアの可視光駆動型脱ラセミ化を報告した(図 1Ab)[3]。励起されたIr触媒によりウレアが酸化された後、キラルブレンステッド塩基によるプロトン移動(PT)、キラルペプチドチオールによるHATを経て脱ラセミ化する。本反応では、二つの不斉触媒による二度の不斉誘導により、高いエナンチオ選択性を実現した。

本論文著者のZuoらは近年、Ce光触媒に着目したアルコールの変換反応を複数報告している(図1B)[4]。これらの反応ではCe錯体のLMCT(ligand to metal charge transfer)を経てアルコールからアルコキシラジカルが生成する。その後β-開裂により生じたアルキルラジカルがラジカル捕捉剤と反応する。

今回、著者らはTi触媒によるアルコキシラジカル生成を起点としたアルコールの脱ラセミ化反応を報告した(図1C)。単一の不斉Ti触媒が、アルコールのβ-開裂と再環化過程における二度の不斉誘導を実現し、高い光学純度でアルコールが得られる。

図1. (A) 光照射を駆動力とした脱ラセミ化反応 (B) 先行研究 (C) 本研究

 

“Multiplicative Enhancement of Stereoenrichment by a Single Catalyst for Deracemization of Alcohols”
Wen, L.; Ding, J.; Duan, L.; Wang, S.; An, Q.; Wang, H.; Zuo, Z.Science2023, 382, 458–464.
DOI: 10.1126/science.adj0040

論文著者の紹介

研究者: Zhiwei Zuo (左智伟)

研究者の経歴:

2007                                                    B.S., Nanjing University, China
2012                       Ph.D., Shanghai Institute of Organic Chemistry (SIOC), China (Prof. Dawei Ma)
2013–2015          Postdoc, Princeton University, USA (Prof. David W. C. MacMillan)
2015–2020          Assistant Professor, Shanghai Tech University, China
2020–                                                  Professor, Shanghai Institute of Organic Chemistry (SIOC), China

研究内容:Ce光触媒を利用したアルコキシラジカル生成法の開発

論文の概要

ヘプタン中、触媒量のTiCl4とキラルリン酸L、Na2CO3存在下、光照射(395 nm)することでラセミ体である環状アルコール1の脱ラセミ化反応が進行し、一方のエナンチオマーが選択的に得られることを見出した(図2A)。本反応は、β位にアリール基をもつ様々な環員数の2級アルコール(1a1c)に加え、α位にメチル基をもつ3級アルコール(1d)に適用できた。また、ビスオキサゾリンL4を不斉配位子に用いることで、非環状アミノアルコール2も利用可能であった。

著者らは、反応機構解明実験として、部分的に重水素化したシクロペンタノール3を脱ラセミ化した(図2B)。その結果、3の重水素化率を維持した状態で、1aと同等の立体選択性を示したことから、脱ラセミ化は水素原子移動(HAT)や段階的な酸化還元過程を経由しないことが明らかとなった。

彼らは高エナンチオ選択性を実現する不斉発現メカニズムも調査した(図 2c)。はじめにC–C結合形成過程におけるエナンチオ選択性を確認した。syn体(±)-2の脱ラセミ化反応では、反応初期に生成するanti体2の鏡像体比はほぼ一定であり(er = 75:25)、anti体は結合開裂に関与しないことが示唆された。すなわち、結合形成過程のエナンチオ選択性はer = 75:25と見積もられた。また結合開裂が進行しない暗条件下、アルデヒド4とイミン5を反応させるとanti体(+)-2が鏡像体比er = 77:23 (kR/kS比3.3:1)で生成した。次に、C–C結合開裂における立体選択性を確認した。2とラジカル捕捉剤6を光照射条件下で反応させた結果、(S)-エナンチオマーが優先的に消費されることが明らかになった(k–S/k–R比8.1:1)。これら二つの不斉誘導過程から算出される鏡像体比(er = kRk–S/kSk–R)はer = 96:4となり、本脱ラセミ化反応における2aの不斉収率(er = 97:3)と一致した。以上より、C–C結合切断/形成の各過程における不斉誘導は中程度であるものの、これらを組み合わせることで高いエナンチオ選択性を達成したことが示された。他にも、Ti(III)の生成やβ-開裂反応の関与、プロキラルなラジカル中間体を経由することが実験的に示された(論文参照)。

図2. (A) 基質適用範囲 (B) 重水素ラベル実験 (C) 不斉誘導の比率の調査実験

今回、不斉チタン触媒を用いたアルコールの脱ラセミ化が報告された。単一触媒による2つの不斉誘導で高いエナンチオ選択性を達成する本手法のコンセプトを応用した、新たな不斉触媒反応の開発が期待される。

参考文献

  1. Huang, M.; Pan, T.; Jiang, X.; Luo, S. Catalytic Deracemization Reactions. J. Am. Chem. Soc. 2023, 14, 10917–1 DOI: 10.1021/jacs.3c02622
  2. Hölzl-Hobmeier, A.; Bauer, A.; Silva, A. V.; Huber, S. M.; Bannwarth, C.; Bach, T. Catalytic Deracemization of Chiral Allenes by Sensitized Excitation with Visible Light. Nature 2018, 564, 240–243. DOI: 1038/s41586-018-0755-1
  3. Shin, N. Y.; Ryss, J. M.; Zhang, X.; Miller, S. J.; Knowles, R. R. Light-Driven Deracemization Enabled by Excited-State Electron Transfer. Science 2019, 366, 364–369. DOI: 1126/science.aay2204
  4. (a) Guo, J.; Hu, A.; Chen, Y.; Sun, J.; Tang, H.; Zuo, Z. Photocatalytic C–C Bond Cleavage and Amination of Cycloalkanols by Cerium(III) Chloride Complex. Angew. Chem., Int. Ed. 2016, 55, 15319–15322. DOI: 1002/anie.201609035 (b) Hu, A.; Chen, Y.; Guo, J.-J.; Yu, N.; An, Q.; Zuo, Z. Cerium-Catalyzed Formal Cycloaddition of Cycloalkanols with Alkenes through Dual Photoexcitation. J. Am. Chem. Soc. 2018, 140, 13580–13585. DOI: 10.1021/jacs.8b08781 (c) Zhang, K.; Chang, L.; An, Q.; Wang, X.; Zuo, Z. Dehydroxymethylation of Alcohols Enabled by Cerium Photocatalysis. J. Am. Chem. Soc. 2019, 141, 10556–10564. DOI: 10.1021/jacs.9b05932 (d) Chen, Y.; Wang, X.; He, X.; An, Q.; Zuo, Z. Photocatalytic Dehydroxymethylative Arylation by Synergistic Cerium and Nickel Catalysis. J. Am. Chem. Soc. 2021, 143, 4896–4902. DOI: 10.1021/jacs.1c00618
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. クロスカップリング反応ーChemical Times特集より
  2. コロナウイルスCOVID-19による化学研究への影響を最小限にす…
  3. オンライン会議に最適なオーディオ機器比較~最も聞き取りやすい機器…
  4. 一度に沢山の医薬分子を放出できるプロドラッグ
  5. 第四回Vプレミアレクチャー「金属錯体を利用した光化学アップコンバ…
  6. 光と励起子が混ざった準粒子 励起子ポラリトン
  7. カーボンニュートラル材料とマテリアルズ・インフォマティクス活用で…
  8. MEDCHEM NEWS 31-1号「低分子創薬」

注目情報

ピックアップ記事

  1. イグノーベル賞2021が発表:今年は化学賞あり!
  2. クロスカップリング反応にかけた夢:化学者たちの発見物語
  3. Advanced Real‐Time Process Analytics for Multistep Synthesis in Continuous Flow
  4. ぼっち学会参加の極意
  5. 持続可能性社会を拓くバイオミメティクス
  6. 分取薄層クロマトグラフィー PTLC (Preparative Thin-Layer Chromatography)
  7. 知的財産権の基礎知識
  8. カンファー(camphor)
  9. カリコ― カタリン Karikó Katalin
  10. グラフェン技術の最先端 ~量産技術と使いやすさの向上、今後の利用展開~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年5月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

ルイス酸性を持つアニオン!?遷移金属触媒の新たなカウンターアニオン”BBcat”

第667回のスポットライトリサーチは、東京大学大学院工学系研究科 野崎研究室 の萬代遼さんにお願いし…

解毒薬のはなし その1 イントロダクション

Tshozoです。最近、配偶者に対し市販されている自動車用化学品を長期に飲ませて半死半生の目に合…

ビル・モランディ Bill Morandi

ビル・モランディ (Bill Morandi、1983年XX月XX日–)はスイスの有機化学者である。…

《マイナビ主催》第2弾!研究者向け研究シーズの事業化を学べるプログラムの応募を受付中 ★交通費・宿泊費補助あり

2025年10月にマイナビ主催で、研究シーズの事業化を学べるプログラムを開催いたします!将来…

化粧品用マイクロプラスチックビーズ代替素材の市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、化粧品…

分子の形がもたらす”柔軟性”を利用した分子配列制御

第666回のスポットライトリサーチは、東北大学多元物質科学研究所(芥川研究室)笠原遥太郎 助教にお願…

柔粘性結晶相の特異な分子運動が、多段階の電気応答を実現する!

第665回のスポットライトリサーチは、東北大学大学院工学研究科(芥川研究室)修士2年の小野寺 希望 …

マーク・レビン Mark D. Levin

マーク D. レビン (Mark D. Levin、–年10月14日)は米国の有機化学者である。米国…

もう一歩先へ進みたい人の化学でつかえる線形代数

概要化学分野の諸問題に潜む線形代数の要素を,化学専攻の目線から解体・解説する。(引用:コロナ…

ノーベル賞受賞者と語り合う5日間!「第17回HOPEミーティング」参加者募集!

今年もHOPEミーティングの参加者募集の時期がやって来ました。HOPEミーティングは、博士課…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP