[スポンサーリンク]

スポットライトリサーチ

カルシウムイオンを結合するロドプシンの発見 ~海の細菌がカルシウムを感じる機構とセンサー応用への期待~

[スポンサーリンク]

第372回のスポットライトリサーチは、国立大学法人名古屋工業大学 大学院工学研究科 博士後期課程1年(神取研究室 在籍)の杉本 哲平 さんにお願いしました。

ロドプシンは我々の視覚や微生物の運動機能などを司る光センサーとして知られるタンパク質で、内部に可視光を吸収するレチナールと呼ばれる分子を結合しています。ロドプシンはレチナールを利用して生体内で光情報の変換・伝達を担っていますが、レチナールは正電荷を持つため、カルシウムイオンなどの陽イオンはロドプシンの内部には結合しないものとこれまで信じられてきました。

杉本さん達は今回、海洋性細菌が持つTATロドプシンがカルシウムイオンを結合することを見出し、The Journal of Physical Chemistry B誌原著論文および名古屋工業大学プレスリリースで発表しました。生体内でのロドプシンの役割や作用機序の理解の推進のみならず、光遺伝学のツールとしての応用化など幅広い可能性が拓かれている研究成果です。

”Calcium Binding to TAT Rhodopsin”

Teppei Sugimoto, Kota Katayama, Hideki Kandori*

J. Phys. Chem. B, 2022, 126, 11, 2203–2207

DOI: 10.1021/acs.jpcb.2c00233

杉本さんを指導されている神取 秀樹 教授より、杉本さんについて以下のコメントをいただいています。

私はよく「先生が結果を予想できるような研究なんてたいした研究ではない。先生が思いもしないようなデータを出してみなさい」と学生さんに言います。”Surprise me” という私の希望に対し、現実には「超遠心機を壊した」などと驚かされる場合が多いのですが、杉本君のカルシウム結合には驚きました。光駆動プロトンポンプの発見が1971年、クロライドポンプの発見が1977年ですが、それ以降、光を吸収するレチナール近傍への陽イオンの結合は不可能というのが分野の常識でした。我々が2013年に発見した光駆動ナトリウムポンプも、ナトリウムイオンの結合は光反応サイクル中の過渡的なものです。カルシウム結合という驚きの発見は、彼の注意深い観察に加えて、助教の片山君と意見を交換しながら行った粘り強い実験の賜物です。結合するのがカルシウムイオンというのも、生命活動における重要性を考えると意義深いですし、次に彼がどうやって私を驚かせてくれるか、楽しみにしています。

それでは、杉本さんのインタビューをお楽しみください!

 

Q1. 今回プレスリリースとなったのはどんな研究ですか?

我々は、微生物ロドプシンとして初めてタンパク質内部へカルシウムイオンを結合できるロドプシンを発見しました。ロドプシンは、ヒトの視覚や微生物のエネルギー生産など、様々な機能をもたらす光センサータンパク質です。光を吸収するために発色団としてビタミンAの一種であるレチナールを保有しています。レチナールはシッフ塩基を介してタンパク質に結合しますが、シッフ塩基が正電荷を持つことで可視光を吸収し、機能を発揮します。実際にレチナールが正電荷を失い中性になると、吸収帯が紫外光領域に移ります。そのため、シッフ塩基周辺への陽イオンの結合は、正電荷同士の静電反発により、不可能とされてきました。今回の研究対象である、海洋性細菌が持つTATロドプシンは、2019年にイスラエルとの共同研究によって発見した新規微生物ロドプシンです。これまでの研究で、pHに依存してシッフ塩基の荷電状態が変化し、可視光吸収型と紫外光吸収型の二つの状態の割合が変化することが分かりました。これはTATロドプシンが環境pHセンサーとして働くことを示唆しました。

今回、我々はTATロドプシンがカルシウムイオンを結合させ、この結合によって可視光吸収型と紫外光吸収型の比率が変化することを明らかにしました。さらに、遺伝子工学技術によるアミノ酸の変異実験によってカルシウムイオンの結合部位を特定し、また赤外分光法によって結合に伴うタンパク質の構造変化を捉えることにも成功しました。今回の研究から、TATロドプシンは海洋環境中のカルシウム濃度とpHの両方を感知していることが考えられました。さらに、TATロドプシンを使って、光でヒトの体内のカルシウム濃度を検知するようなツール開発にも研究を発展できることが期待されます。

Fig. 1 ロドプシンのカルシウム結合と吸収波長の変化

 

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

本研究を通して、私にとって一番の思い入れはやはり、TATロドプシンがカルシウムイオン結合能を有していることを発見した瞬間です。ロドプシンを含め光センサータンパク質は外界の光を吸収することで着色します (多くのロドプシンは500 nm付近の緑色光を吸収する結果、赤橙色を示します)。私はTATロドプシンを作製していく過程で、塩濃度の違いでTATロドプシンが異なる色を示すことに気付きました。この現象は、レチナール近辺へのイオン結合に起因することが他のロドプシン研究から知られていました。この現象を発見した当時、ちょうどコロナ禍に突入したこともあり、大学での研究活動が制限され始めた時期でもありました。しかし、何のイオンが結合するのか?TATロドプシンの物性への影響は何か?など、探求心への強い気持ちから、神取先生、片山先生に許可をもらい、早速TATロドプシンに対し、様々なイオン存在下での紫外可視吸収スペクトル測定を行い、カルシウムイオン結合の発見につながりました。カルシウムイオンを添加していきTATロドプシンの吸収波長がシフトしていく様子をコロナ禍の影響で閑散として実験室内で観察した時の興奮はその後の自身の研究活動の大きな糧になりました。

 

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

カルシウムイオンが結合することは分かりましたが、タンパク質内部のどこに結合し、どのような結合様式および構造変化を引き起こすのか、 という課題が次々に生まれました。これまでに知られている陽イオン結合能を有する微生物ロドプシンはすべてナトリウムイオンなどの一価イオンであり、二価イオンを結合させるロドプシンはTATロドプシンが初めてであったことに加え、原子構造が分かっていないため、結合部位の探索は困難を極めました。幸い結合部位の候補となり得る酸性アミノ酸の変異体を作製し、カルシウムイオン存在下での吸収スペクトル測定による波長シフトから検証できるわけですが、実際は酸性アミノ酸の単変異では不十分であり、レチナール近辺の2つの酸性アミノ酸の二重変異によって、結合部位を特定することができました。結合機構や構造変化については、我々の研究室が世界をリードする、分子振動の変化をスペクトル変化として捉える赤外分光法を活用することで、カルシウムイオン結合に伴うTATロドプシンの構造変化を抽出し、変異体の結果と合わせて、結合機構を提唱することができました。そして、何よりこれらの変異体の予測・提案は、日々の研究室セミナーや先生および先輩方との濃厚なディスカッションによって生まれた賜物であり、今後も継続して研究室内や学会参加による外部の研究者とのディスカッションを大切したいと改めて感じることができました。

 

Q4. 将来は化学とどう関わっていきたいですか?

私は今年4月から博士後期課程に進学し、TATロドプシンがカルシウムイオンを結合することで光反応にどのような影響を与えるのか、その詳細なメカニズムを明らかにしたいと考えています。また、私が行っている研究は基礎研究ですが、カルシウムイオンは生体内の情報伝達に大きな役割を担っているため、これまで研究してきたカルシウムイオンの結合様式と、これから研究していく光反応メカニズムを応用して、光で生体内のカルシウムイオンを制御できるツールの創成にも携わっていきたいと考えています。

 

Q5. 最後に、読者の皆さんにメッセージをお願いします。

本研究は偶然発見したものであり、自分の知識が足りていない中で多くの人々に支えられながら達成することができたと思います。また、今回の研究を通して、他人に自分の成果を認められる喜びを知ることができたと思います。今後は、現状に満足せず、さらに自分の研究を発展させていきたいです。

最後になりましたが、今回このような貴重な機会を与えてくださったChem-Stationスタッフの方々に感謝申し上げます。そして、本研究をまとめるにあたり、ご指導とご助言をいただいた神取秀樹教授、片山耕大助教をはじめ、研究室の皆様に深く感謝申し上げます。

 

【研究者の略歴】

名前:杉本 哲平 (すぎもと てっぺい)

所属:名古屋工業大学 大学院工学研究科 博士後期課程1年 工学専攻 生命応用化学系プログラム 神取研究室

研究テーマ:TATロドプシンの光反応機構解明

 

 

 

関連リンク

名古屋工業大学 神取研究室 Website

名古屋工業大学プレスリリース:カルシウムイオンを結合するロドプシンの発見 ~海の細菌がカルシウムを感じる機構とセンサー応用への期待~

Shirataki

投稿者の記事一覧

目には見えない生き物の仕組みに惹かれ、生体分子の魅力を探っていこうとしています。ポスドクや科学館スタッフ、大学発ベンチャー研究員などを経て放浪中。

関連記事

  1. ケムステ版・ノーベル化学賞候補者リスト【2022年版】
  2. がん代謝物との環化付加反応によるがん化学療法
  3. 研究テーマ変更奮闘記 – PhD留学(後編)
  4. 化学Webギャラリー@Flickr 【Part5】
  5. 有機フォトレドックス触媒による酸化還元電位を巧みに制御した[2+…
  6. 酸化反応条件で抗酸化物質を効率的につくる
  7. 放線菌が生産するアベナルミ酸生合成において、ジアゾ化とヒドリド転…
  8. 乙卯研究所 研究員募集

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 窒素固定をめぐって-2
  2. 衣笠反応 Kinugasa Reaction
  3. ボイランド・シムズ酸化 Boyland-Sims Oxidation
  4. 化学系プレプリントサーバー「ChemRxiv」のβ版が運用開始
  5. 化学系人材の、より良い将来選択のために
  6. 【書籍】化学系学生にわかりやすい 平衡論・速度論
  7. 低投資で効率的な英語学習~有用な教材は身近にある!
  8. PCに眠る未採択申請書を活用して、外部資金を狙う新たな手法
  9. ハンチュ ピロール合成 Hantzsch Pyrrole Synthesis
  10. 第22回次世代を担う有機化学シンポジウム

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年4月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

GoodNotesに化学構造が書きやすいノートが新登場!その使用感はいかに?

みなさんは現在どのようなもので授業ノートを取っていますでしょうか。私が学生だったときには電子…

化学者のためのWordマクロ -Supporting Informationの作成作業効率化-

「化合物データの帰属チェックリスト、見やすいんですが、もっと使いやすくならないですか」ある日、ラ…

酢酸ウラニル(VI) –意外なところから見つかる放射性物質–

酢酸ウラニル(VI) (UO2(CH3COO)2·2H2O) はウラニル (二酸化ウ…

機械学習と計算化学を融合したデータ駆動的な反応選択性の解明

第612回のスポットライトリサーチは、横浜国立大学 大学院理工学府(五東研究室)博士課程後期1年の坂…

超塩基配位子が助けてくれる!銅触媒による四級炭素の構築

銅触媒による三級アルキルハライドとアニリン類とのC–Cクロスカップリングが開発された。高い電子供与性…

先端領域に携わりたいという秘めた思い。考えてもいなかったスタートアップに叶う場があった

研究職としてキャリアを重ねている方々の中には、スタートアップは企業規模が小さく不安定だからといった理…

励起パラジウム触媒でケトンを還元!ケチルラジカルの新たな発生法と反応への応用

第 611 回のスポットライトリサーチは、(前) 乙卯研究所 博士研究員、(現) 北海道大学 化学反…

“マブ” “ナブ” “チニブ” とかのはなし

Tshozoです。件のことからお薬について相変わらず色々と調べているのですが、その中で薬の名…

【著者に聞いてみた!】なぜ川中一輝はNH2基を有する超原子価ヨウ素試薬を世界で初めて作れたのか!?

世界初のNH2基含有超原子価ヨウ素試薬開発の裏側を探った原著論文Amino-λ3-iodan…

千葉 俊介 Shunsuke Chiba

千葉俊介 (ちばしゅんすけ、1978年05月19日–)は日本の有機化学者である。シンガポール南洋理⼯…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP