[スポンサーリンク]

化学者のつぶやき

分子レベルでお互いを見分けるゲル

[スポンサーリンク]

Macroscopic self-assembly through molecular recognition
Harada, A.*: Kobayashi, R. Takashima, Y.; Hashidzume, A.; Yamaguchi. H. Nature Chem.2011, AOP DOI: 10.1038/NCHEM.893

色違いのゲルを、さいの目に切ったものがシャーレに置かれています。水に浸してシェイクすると、特定のペアのみ(赤と緑、黄と青)がくっついて、ゲルの固まりができます。一方で、他の別ペアや同じ物どうしは、くっつきあうことがありません。

この不思議なゲルを開発したのは、大阪大学の原田明教授。

本当に驚くべき現象ですが、果たしてどういう理屈なのでしょう?

実はここには、分子がお互いを見分ける「分子認識」の考え方が、フル活用されているのです。


まずは、前提知識を知っておく必要があります。

ゲルに組み込まれている分子は、糖が環状につながったシクロデキストリン(CD)という化合物です。ここではα-CDβ-CDの二種類が使われていますが、それぞれ環の大きさが異なっています。
いずれも図に示すとおり台形の”バームクーヘン型”をしており、外側は水となじみやすく(親水性)、空孔内部は炭化水素となじみやすい(疎水性)特性をもっています。

gel_macroscopic_3.gif

(画像:原田明研究室より)

CD分子は、穴の大きさにフィットする分子(ゲスト)と強く結合するホスト分子になることが知られています。穴にフィットしない分子とはちゃんと結合しません。また、環の大きさに応じて、取り込める分子の種類は異なります。

CD分子はつまり、特定の分子を選びとって、捕まえる能力をもった化合物と言えるわけです。(参考:シクロデキストリンのホスト・ゲストケミストリー

さて、β-CDはアダマンチル(Ad)基もしくはtert-ブチル(t-Bu)基、α-CDはn-ブチル(n-Bu)基とそれぞれ選択的に、かつ強く結合することが知られています。

これらの分子をアクリルアミドに結合させ、それぞれ重合させて色をつけたのが、この不思議なゲルです。

これだけでご覧のとおり、お互いに結合する分子の組み合わせをもったゲル同士だけが、見事にくっつくのです。

90℃にまで加熱するとはがれます。相互作用の強さは、おおむね分子レベルの結合定数を反映したものになっているようです。β-CD-gelとAd-gelは特に強く結合しますが、大きさの似た極性分子・アダマンチルアミン塩酸塩を成分とするAdA-gelとは上手く結合してくれません。こういった事実からもやはり、ゲル結合表面における分子認識過程こそが重要であるという示唆が得られています。

gel_macroscopic_4.jpg

(画像は論文より引用)

分子認識という非常にミクロな現象が、目で見えるほどのスケールにまで拡大されて発現している例の一つです。よくある表面認識過程では、もっとラフなスケールの事象、たとえば表面のざらつきや凹凸が上手く噛み合うかどうか、などといったことが議論の的になってくるものですが、このケースはそれとは全く異なっています。まさに「分子レベルの目」を持つ化学者にしか、実現出来ない材料の一つなのです。

ところで、この材料にはどんな応用が考えられるのでしょうか? 論文中では特に述べられていませんが、無害な材料ですから、楽しいおもちゃなんかに使えそうですね。機能を持たせたゲルを、マクロスケールで自己組織化させて、より複雑な機能を持たせるようなことすらこれから可能になってくるかもしれません。

そんなことを夢いっぱいに空想することが許されるのも、材料を一から作り出せる能力を持つ化学者ならではの特権だといえそうです。

  • 関連書籍
  • 関連リンク

大阪大学大学院理学系研究科 超分子化学研究室 (原田明 研)

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 触媒がいざなう加速世界へのバックドア
  2. 超分子カプセル内包型発光性金属錯体の創製
  3. 第2回慶應有機合成化学若手シンポジウム
  4. 落葉の化学~「コロ助の科学質問箱」に捧ぐ
  5. 環歪みを細胞取り込みに活かす
  6. Dead Endを回避せよ!「全合成・極限からの一手」①(解答編…
  7. 日本薬学会第137年会  付設展示会ケムステキャンペーン
  8. 機械的刺激による結晶間相転移に基づく発光性メカノクロミズム

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. チロシン選択的タンパク質修飾反応 Tyr-Selective Protein Modification
  2. 庄野酸化 Shono Oxidation
  3. 大環状ヘテロ環の合成から抗がん剤開発へ
  4. 水が促進するエポキシド開環カスケード
  5. トーマス・レクタ Thomas Lectka
  6. 有機触媒によるトリフルオロボレート塩の不斉共役付加
  7. ラウリマライドの全合成
  8. 第15回 触媒の力で斬新な炭素骨格構築 中尾 佳亮講師
  9. 市販の新解熱鎮痛薬「ロキソニン」って?
  10. 研究室での英語【Part 2】

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

第126回―「分子アセンブリによって複雑化合物へとアプローチする」Zachary Aron博士

第126回の海外化学者インタビューはザッカリー・アーロン博士です。インディアナ大学ブルーミントン校の…

コンピューターが有機EL材料の逆項間交差の速度定数を予言!

第278回のスポットライトリサーチは、理化学研究所 夫研究室の相澤 直矢(あいざわ なおや)さんにお…

(–)-Daphenezomine AとBの全合成

ユズリハアルカロイドである(–)-Daphenezomine AとBの初の全合成が達成された。複雑な…

機能性ナノマテリアル シクロデキストリンの科学ーChemical Times特集より

関東化学が発行する化学情報誌「ケミカルタイムズ」。年4回発行のこの無料雑誌の紹介をしています。…

粒子画像モニタリングシステム EasyViewerをデモしてみた

スラリー中の粒子(結晶)の観察は、晶析研究などではぜひみたいところです。しかし、外に取り出し…

化学者のためのエレクトロニクス講座~次世代配線技術編

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLE…

三井化学岩国大竹工場の設備が未来技術遺産に登録

三井化学はこのほど、岩国大竹工場(山口県和木町)にあるポリエチレン製造装置が、国立科学博物館により、…

【金はなぜ金色なの?】 相対論効果 Relativistic Effects

相対性理論は、光速近くで運動する物体で顕著になる現象を表した理論です。電子や原子などのミクロな物質を…

Chem-Station Twitter

PAGE TOP