[スポンサーリンク]

一般的な話題

Carl Boschの人生 その7

[スポンサーリンク]

Tshozoです。前回のつづき早速いきます。少し調査量が増えたためペースを見誤っていますが通常運転です。

(3)高圧リアクターの実現

前回記載したティッセンとクルップから供給された(大砲の砲身にも使われていた)当時最高レベルの超高強度・超高靱性の鉄製円筒を利用した円筒型高圧リアクター、これがHaber-Bosch法でBoschが直接的に成し遂げた最大の成果です。

これについてはあちこちの文献や「大気の錬金術」にも(Holdermann本のほぼ丸コピレベルで)詳細が書かれているので子細を採り上げるのはここではヤメておき、技術的ポイントとあまりどこの文書にも記載されていない重要と思われた点を書いていきます。あらすじを見ていくと、①②③④が前半、⑤⑥⑦⑧⑨が後半になります。

①開発開始から僅か半年で鉄触媒を見極めたのに気をよくした経営陣からの指示で開発人員が倍に膨れ上がった
②塩素合成プラントからアンモニア日産換算0.4トン分の水素を引っ張ってきて、1kgの磁鉄鉱触媒を入れた壁厚み30mmの大型高強度炭素鋼製高圧反応管でとっとと大量合成しようとした
③稼働後3日で壁面にヒビが入って破裂
④高圧部で水素が炭素鋼を還元して脆くしてしまっていると判明、開発頓挫しかかる
⑤加熱を高圧リアクター外側から熱したりとか高圧部の内張り用金属を銅とか銀とかにしたり色々やる
⑥遅かれ早かれ全部アウトになるのでダメ、ヤケ酒で憂さ晴らし
⑦内張りに軟鉄を使うことを思いつくが、やっぱり時間の問題でダメになることが判明、もう一回ヤケ酒
⑧フツカヨイの朝、追加の解決策を思いついてすぐ特許書いてブラッシュアップさせる
⑨1年くらい動かしても大丈夫なリアクターを完成させる!

となります。ポイントになったのはもちろん③⑦⑧で、デカめのリアクターにすると高温高圧で高強度鋼内の炭素が水素還元されてCxHyとして金属から抜けることでその部分が脆くなり、高圧でリアクタ壁が拡張応力に耐えられなくなりヒビが入って最後には爆発してしまったわけです。④⑤⑥を経る中で一時期はBoschですら何度も「この問題は解決できないのではないか」(“…war selbst Bosch manchmal der Meinung, dass man es nicht bewaeltigen werde”)と考える程追い込まれていました。

ではどうしたのか?

ということで⑦と⑧の詳細。こういう時は気分転換、というわけではないでしょうがボーリング&ビールで憂さ晴らししたある朝、⑤の銅とか銀を使っていた内壁のことに頭が行きます。そこで考えたのが他の金属ではなく「脱炭しきった軟鉄を内張りに使ったらどうなのか?」という革新的かつ安いアイデア。内張りに炭素を含まない鉄であれば、水素も反応することなく通過するだけ。軟鉄に溶け込んだ水素はもちろん外壁に到達して外壁に影響は及ぼしますが実質分圧が下がっているので大丈夫ではないか? ここまでが⑦です。

しかし軟鉄は柔らかく強度に寄与しないし、軟鉄を通った水素は影響力は落ちていても外壁の高強度部位に到達してしまうので最終的には亀裂に発展してしまいかねない。ということで更にカジノとビールで憂さ晴らしをした冬のある朝、追加の解決策である「抜けてきた水素を効率的に外壁の外に抜けるように工夫を凝らせば問題はなくなる」という考えに至ります。それが彼が考えた最終的な解決策でした。Boschがこの案を完成させた瞬間、1911年 2月のある朝の日が人類の歴史を変えたと言っても過言では無いと思います(筆者は本当にそう信じています)。ここが⑧⑨のところですね。

そうして出来上がった構造[文献1] 軟鉄はLiner部に使われている
何年振りかに改めて見たが
美しく、シンプルなこの上ない設計だと感じます

実際の円筒の断面にある、水素を外に逃がす”Boschloch” 結構攻めた部分まで穴を空けてる
(Mersburg のドイツ化学博物館より引用 リンク)
内張りは焼嵌めではめ込まれていたようだが
境界面が無い所を見るとはめ込んだ後で再度焼入れしていると推定

ということでこのアイデアに至るまでにやっていたことは無駄だったわけでは決してなく、円筒内壁に水素除けのつもりで銅とか銀とかの内張りを使うという苦し紛れの手を打っていなければ、軟鉄内張りというアイデアは産まれてこなかったでしょうし、鉄をよく理解していたBoschでなければきっと穴を空けても強度がそうは低下しないという視点には至らなかったと思います。奇跡と努力、努力と奇跡、これですな結局! 努力が奇跡を生み、奇跡が努力を生んだのでしょう。

蛇足ですが彼らも無為無策でこの大型リアクターを作ったわけではなく、前回書いたSternが作った触媒探索用の小さな反応管では全く問題は起きていなかったという理由があったからなのです。

前回の記事から再掲[文献1] これでは起きなかったのに・・・

この理由としては主に「円筒径が小さい場合には内面積が小さいため円筒にかかる総推力が小さく高温になっても円筒が変形する量が少なかった、このために若干脆くなっていても大丈夫だった」ということが挙げられます。しかし、だからと言って何百時間も平気で動いていたというのは少し疑問が残る。以下は筆者の推定ですが、もしかしたら内部のごく表面だけがうまく脱炭して上記のように「軟鉄化」していたのかもしれません。後出しジャンケン的な考え方ですが、水素が外周部に行っても外気温で冷やされていますから反応は起きにくく外に漏れていくだけですし、円筒壁が実質薄いから効率的に水素は抜けていきますし、実は結構理想的なリアクター形態になっていたんではなかろうかと思っています。もしかしたらBoschもこのことに思い至ったんではないかと妄想するとちょっと楽しいですね。まぁ、図を見る限り内径が約8cm程度ですからちょっとした内壁表面の変化はよほど注意していないと見逃してしまいますし、第一触媒の探索をやっていたわけで、円筒内部の方に気を配るまでには行っていなかったのでしょう。

こうして開発の大きなコンセプトであった「高温高圧水素とのメカ的な戦い」に対しBoschのこの解決案はシンプルで、安く、しかも汎用性があるものであり、まさに窒素化学へのイノベーションの大黒柱となるものでした。イノベーションには(複雑な数学などが根本にあるケースもありますが)製造業・化学工業においてにはやはり「安く汎用化できる」ことが発明のどこかで実現または体現されることが根幹にあるわけですが、正にそれだったわけです。

なおこのリアクターの開発についてBoschは1921年のシュツットガルトでの講演でこのように述べています;

“Wir konnen unbedenklich das Schaffen des Industriellen neben das rein kuenstlerische Schaffen stellen. Sowenig die Kuenstler letzten Endes Herr seiner Gedanken und Einfaelle ist, sowenig es ist der Techiniker. Es ist falsch, anzunehmen, alles sei erreichnet, alles sei erkluegelt. Es kommt ueber ihn im geeigneten Moment wie ueber den Kuenstler in der Schaffenslaune.”

(大意):「産業的な創発は、藝術的なそれとよく似ており、藝術家がそのコンセプトや発想を全て作れるわけではないように技術者も全部自分で思いつけるものではない。全部実現できるとか、全部案を捻りだせるとかいうのは大間違いであり、藝術家の発想のようにある然るべき時に『降りて』くるものなのである」

色々な科学技術の方針を決めている方々はアタマがいいからだいたい何でも見通せるでしょうし、アタマの回転が速いから時流にのってうまいこと色々決めていけるのかもしれません。あるいは時間が無いから計画経済的にテキトーにやってるのかもしれません。しかしながらこの言葉は、史上最大の化学者のひとりであるBoschを以ってしても創発やイノベーションのきっかけを見通せるものはなにもないということを語っているわけです。その意味でもこの言葉は創造、創発といったような不確定であるものにどう対峙するかを改めて見直すための良い指針になるのではないでしょうか。

まぁ、そうは言ってもそのために最低限必要なことをBoschは身を以って示してくれていて、それはとりもなおさず「労働・娯楽・アルコール」であることは疑う余地は一切ありません。反論は許しません。

それでは今回はこんなところで。次回は最後に立ちはだかった水素製造の問題をどう解いたのかを書きます。

【参考文献】

  1. “The development of the chemical high pressure method during the establishment of the new ammonia industry”, Nobel Prize Lecture, Carl Bosch, 1932, リンク
Avatar photo

Tshozo

投稿者の記事一覧

メーカ開発経験者(電気)。56歳。コンピュータを電算機と呼ぶ程度の老人。クラウジウスの論文から化学の世界に入る。ショーペンハウアーが嫌い。

関連記事

  1. ストックホルム国際青年科学セミナー・2018年の参加学生を募集開…
  2. アゾ重合開始剤の特徴と選び方
  3. マテリアルズ・インフォマティクスの導入・活用・推進におけるよくあ…
  4. フローリアクターでペプチド連結法を革新する
  5. 有機合成化学の豆知識botを作ってみた
  6. 温和な室温条件で高反応性活性種・オルトキノジメタンを生成
  7. ウッドワード・ホフマン則を打ち破る『力学的活性化』
  8. 速報・常温常圧反応によるアンモニア合成の実現について

注目情報

ピックアップ記事

  1. 白い粉の正体は…入れ歯洗浄剤
  2. アメリカ企業研究員の生活③:新入社員の採用プロセス
  3. セイファース・ギルバート アルキン合成 Seyferth-Gilbert Alkyne Synthesis
  4. 光で動くモーター 世界初、東工大教授ら開発
  5. 超合金粉末の製造方法の改善に機械学習が試行される
  6. 中国へ行ってきました 西安・上海・北京編②
  7. STAP細胞問題から見えた市民と科学者の乖離ー後編
  8. マンガン触媒による飽和炭化水素の直接アジド化
  9. オルトチタン酸テトライソプロピル:Tetraisopropyl Orthotitanate
  10. ブーボー/ボドロー・チチバビン アルデヒド合成 Bouveault/Bodroux-Chichibabin Aldehyde Synthesis

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年4月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP