[スポンサーリンク]

スポットライトリサーチ

機械学習と計算化学を融合したデータ駆動的な反応選択性の解明

[スポンサーリンク]

第612回のスポットライトリサーチは、横浜国立大学 大学院理工学府(五東研究室)博士課程後期1年の坂口大門 さんにお願いしました。

今回ご紹介するのは、反応の立体選択性を予測する機械学習モデル開発に関する成果です。本手法を用いて323反応の解析を行ったところ高い精度の定量的な予測を達成し、また構築されたモデルの定量性から反応条件による選択性の違いを解明されています。

本成果はJ. Chem. Inf. Model.誌 原著論文プレスリリースに公開されています。

Using Three-Dimensional Information to Predict and Interpret the Facial Selectivities of Nucleophilic Additions to Cyclic Ketones
Sakaguchi, D.; Gotoh, H. J. Chem. Inf. Model. 2024, 64, 3213–3221. DOI: 10.1021/acs.jcim.4c00101

研究室を主宰されている五東弘昭 准教授から、坂口さんについて以下のコメントを頂いています。それでは今回もインタビューをお楽しみください!

坂口くんが2021年4月に卒業研究生として配属されてから博士課程前期課程までに行った研究が、成果としてまとまったものです。機械学習などにより色々な化学的なことが予想されるようになっておりますが、この研究では、あまり報告例が無い身近なジアステレオ選択的な求核付加反応をテーマにしたものです。

このテーマは、最初は坂口くんの希望もあって研究目的だけを与え、具体的な研究計画や手法は坂口君の考案に委ねていましたが研究の初期段階では苦労が絶えませんでした。ケトンのNaBH4やPhLiなどによるジアステレオ選択的な還元や付加は、多くの有機化学系の研究室で行われる一般的なことだと思いますが、機械学習で予測するには非常に難しいものでした。それでも、辛抱強く検討を重ねて初期の予測を凌駕する驚くような研究成果に繋げてくれました。

また、坂口くんは、最近ではQSSR(定量的構造選択性相関研究)チームのリーダーとして後輩の指導を適切な距離感で親身に行なってくれており、グループにおいて欠かすことのできない人物になっています。今回の研究は、坂口君のファーストオーサーのデビュー作ですが、QSSRに関する研究を他にも色々と検討しております。博士後期課程に進学しても持ち前の能力を発揮して、飛躍した研究を引き続き行ってくれることを期待しております。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

機械学習を用いた反応選択性の定量解明」を行いました。反応選択性の制御は原料化合物を無駄なく反応させる上で重要であり、精密な制御が求められています。一方でフラスコの内で起きている反応はまだまだブラックボックスな部分が多く、理論計算 (ex. 遷移状態計算) による選択性の定量解明 (活性化エネルギー差ΔΔG ≈ 数kcal/mol) はあまり進んでいません。そこで着目したのが、機械学習を用いたデータ駆動的な手法を用いた選択性の解明です。私は、反応の本質情報である立体電子状態と、反応選択性ΔΔGの定量的な関係を機械学習により経験的に解明することで、香料や医薬品の合成等に用いられる環状ケトンの求核反応の面選択性の予測に成功しました。本研究により、環状ケトンの求核反応の面選択性は求核剤の大きさとハード性によって決まるということが分かりました (図1)。

図1 予測した反応選択性の例。(A),(B): 2-methylcyclopentanoneに対する求核反応は、小さな求核剤であるMeMgIを用いるとややsyn選択的だが、大きな求核剤であるPhMgIを用いると2位のmethyl基との立体障害を避けるようにanti選択的になる。(C),(D): 4-tert-butylcyclohexanoneに対する求核反応は、ソフトな求核剤であるNaBH4を用いると軌道因子的に有利なaxial選択的だが、ハードな求核剤であるMeLiを用いると立体因子有利なequatorial選択的になる。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

まず、図の作成にはかなりこだわりました。本研究では3次元の電子状態を解析しているので、2次元の紙面上に分かりやすく表示するのはかなり難しかったです。透かしや網目を駆使することで伝わりやすくなったと思います(論文のFigure 4, Figure. 7は是非見ていただきたいです)。

あとは、反応選択性の予測だけで完結とならないよう、実験化学者の方にも理解してもらえるような見せ方を工夫しました。具体的には、本手法を基にしたウェブアプリケーションを作成・公開しており、学会等では好評を得ています (図2)。まだまだ勉強中ですが、実験化学で求められていることを理解し、私の解析モデルを通じて世界中の実験化学者の方と繋がりたいと思っています。

図 2 公開中のウェブアプリケーション。改良中ですが、Gaussianなどで得られる計算ファイル(Gaussian cube file)をアップロードすると実際に計算ができます。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

「機械学習はデータ収集が8割」といわれる通り、データ収集です。当初、化学データベース (Scifinder) からデータ収集の自動化を試みましたが、表記ゆれや情報の欠落が多く実用が難しかったため、構造情報や選択性といったデータは手入力で集めることにしました。いくつかの総説はデータ収集に役立ちましたが、誤植や重要情報の欠落も見られ、オリジナルの論文を自分の目で確かめることの重要性を強く感じました。結果的には論文を読み込んだおかげで、数値では現れない定性的な文書情報が問題解決の糸口に繋がった所もあった点は良かったかと思います。

Q4. 将来は化学とどう関わっていきたいですか?

データサイエンスと計算化学を用いて、化学の本質を解明していく化学者を目指しています。学術分野・産業分野ともに、化学のデジタル化が進んできていると感じます。これから20年、30年後の化学では、機械学習やAI技術がさらに発展していることでしょう。今後、必要になるであろう実験化学と計算化学を両方分かっている化学者になりたいと考えています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

私の所属する五東研究室の研究テーマは計算 (自然言語処理や分子生成モデル) から実験 (抗酸化能測定やフェノールのカップリング) まで多岐にわたり、それぞれの専門分野を持った学生から刺激を受けています。私の学部時代の印象に残っている講義で、研究は特定のテーマを究めること以上に、視野を広くすることも重要だと学びました。自分の専門分野を究める以上に、視野を広げていくことが重要だと思います。まだまだ研究者としては未熟ですが、研究室選びで悩んでいる学生の方に研究の捉え方の一意見としてとらえてもらえれば幸いです。

最後に、研究の遂行から論文執筆までをあらゆる面からご指導いただいた五東先生、研究紹介を行う機会を設けていただいた Chem-Station スタッフの皆様に深く感謝いたします。

研究者の略歴

名前:坂口 大門さかぐち だいもん
所属:横浜国立大学理工学府 博士課程後期 1年
略歴:
2024年 3月 横浜国立大学 理工学府 化学・生命系理工学専攻 博士課程前期卒業
2024年 4月 横浜国立大学 理工学府 化学・生命系理工学専攻 博士課程後期入学
2024年 4月 横浜国立大学 理工学府  非常勤講師 (データサイエンス実践基礎)

関連リンク

  1. Sakaguchi, D.; Gotoh, H. Using Three-Dimensional Information to Predict and Interpret the Facial Selectivities of Nucleophilic Additions to Cyclic Ketones. J. Chem. Inf. Model. 2024, 64, 3213–3221. DOI: 10.1021/acs.jcim.4c00101
  2. Matsumoto, Y.; Gotoh, H. Compound Classification and Consideration of Correlation with Chemical Descriptors from Articles on Antioxidant Capacity Using Natural Language Processing. J. Chem. Inf. Model. 2024, 64, 119–127. DOI: 10.1021/acs.jcim.3c01826
  3. 研究室ホームページ

hoda

投稿者の記事一覧

大学院生です。ケモインフォマティクス→触媒

関連記事

  1. 結晶格子の柔軟性制御によって水に強い有機半導体をつくる
  2. SDFって何?~化合物の表記法~
  3. YMC「水素吸蔵合金キャニスター」:水素を安全・効率的に所有!
  4. ネイチャー論文で絶対立体配置の”誤審”
  5. 化学反応を“プローブ”として用いて分子内電子移動プロセスを検出
  6. 金属-金属結合をもつ二核ランタノイド錯体 -単分子磁石の記録を次…
  7. 第19回ケムステVシンポ「化学者だって起業するっつーの」を開催し…
  8. 2010年イグノーベル賞決定!

注目情報

ピックアップ記事

  1. 日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part1
  2. 生体医用イメージングを志向した第二近赤外光(NIR-II)色素:①単層カーボンナノチューブ
  3. 有機合成化学協会誌7月号:ランドリン全合成・分子間interrupted Pummerer反応・高共役拡張ポルフィリノイド・イナミド・含フッ素ビニルスルホニウム塩・ベンゾクロメン
  4. 房総半島沖350キロに希少金属 広範囲に
  5. 作った分子もペコペコだけど作ったヤツもペコペコした話 –お椀型分子を利用した強誘電体メモリ–
  6. 遷移金属の不斉触媒作用を強化するキラルカウンターイオン法
  7. 最近のwebから〜固体の水素水?・化合物名の商標登録〜
  8. 金属材料・セラミックス材料領域におけるマテリアルズ・インフォマティクスの活用
  9. 投票!2019年ノーベル化学賞は誰の手に!?
  10. Discorhabdin B, H, K, およびaleutianamineの不斉全合成

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年5月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

先端の質量分析:GC-MSおよびLC-MSデータ処理における機械学習の応用

キャラクタライゼーションの機械学習応用は、マテリアルズ・インフォマティクス(MI)およびラボオートメ…

原子半径・電気陰性度・中間体の安定性に起因する課題を打破〜担持Niナノ粒子触媒の協奏的触媒作用〜

第648回のスポットライトリサーチは、東京大学大学院工学系研究科(山口研究室)博士課程後期2年の松山…

リビングラジカル重合ガイドブック -材料設計のための反応制御-

概要高機能高分子材料の合成法として必須となったリビングラジカル重合を、ラジカル重合の基礎から、各…

高硬度なのに高速に生分解する超分子バイオプラスチックのはなし

Tshozoです。これまでプラスチックの選別の話やマイクロプラスチックの話、およびナノプラスチッ…

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP