[スポンサーリンク]

化学者のつぶやき

ゲルマニウムビニリデン

[スポンサーリンク]

分子の末端に” =C: ” 部位を持つ化合物として、イソニトリル(RN=C:)があります。この窒素の代わりに炭素が結合した場合に得られるアセチレンの異性体(R2C=C:)のことを、ビニリデンと言います。

高周期が変?炭素が特別?

炭素は価電子を4つ持つため、一酸化炭素(CO)やイソニトリル、カルベン(R2C:)等の例を除くと、通常、σ、π 結合あわせて四つの結合を形成します。ところがsp3、sp2、spと様々な混成を容易に形成できる炭素と異なり、高周期元素では置換基の配位数を固定すると、よりs性の低い[sp3 (25%), sp2 (33.3%), sp (50%)] 電子状態を好む傾向があります。そのため、例えばsp混成炭素を持ち直線構造を示すアセチレン(HC≡CH)とは対照的に、その高周期類縁体は、折れ曲がった構造の方がより安定であると推測されており[1]、これまでに単離されたゲルマニウムのアセチレン類縁体は、以下に示すようなトランスベント構造であることが報告されています[2]。
fig-1(それぞれ文献2より引用)

また、母体(HGeGeH)における理論計算によると、トランスベント構造 B以外の異性体 C, D, Eも、直線構造 Aより安定であることが予想されています。

fig-2

(E = Ge、原著論文より引用)

で、ちょっと待ってくださいよ、と。よくよく数字を見比べてみると、二つの水素が架橋した Dのほうが一番安定だし、CとかEに関してもBより安定じゃん、なんで B的なやつしか報告されていないの?と、思うわけです。
そこで、もう一度上に示した単離例をみてみると解る通り、置換基がでかいことに気が付くと思います。そう、置換基間の立体反発による不安定化が要因となって、置換基どうしが一番はなれた、分子内立体反発の低い Bが得られる、というわけです。

アセチレン類縁体を得たいがために、速度論的安定化効果を持つでかい置換基を用いた結果、その置換基間立体反発によって本来より安定であるはずの構造にたどり着けない、というなんとも言えない状態に至ってるんですね。いや、トランスベントはそれで素敵ですけどね。

異性体間の安定性を変えるには

なるほど、現状は分析&把握できましたね。ここからが大事。
では、どうすれば B以外の異性体を単離できるでしょうか?(と、現場の化学者はすぐに想像しちゃう癖を持ちましょー)

.二座型の置換基を開発する (→いけるかもしれないけどギャンブルね

.逆に Bの状態でも立体反発が出るくらいバカでかい置換基をつかって、B-Eにおける立体反発差を誤差にする (→ その置換基が思いつかないわ・・

.フラーレンに閉じ込める (→ M田Y次郎先生お願いします)[3]

 思いつかなくて、考えるのやめる ( →カーズ?!)[4]

.立体反発による不安定化を超える安定化効果を持つ置換基を使う(← いまここ

ゲルマニウムビニリデンを得る方法

今回、Oxford大のSimon Aldrigeらのグループ[5]によって、トランスベント構造以外の異性体が単離されたので報告したいと思います。その名も、ビニリデン。

Arnab Rit, Jesus Campos, Haoyu Niu and Simon Aldridge, Nat. Chem. 2016, doi:10.1038/nchem.2597

著者らは、ボリル基とClを置換基とするゲルミレンのカルベン付加体を出発原料とし、Mg錯体、もしくはカリウム類で還元反応を行いました。Mg錯体を用いた還元反応からは、カルベンが配位したジゲルミンが得られています。をさらにKC8で還元すると、ジアニオン種が生成しています。還元によってカルベンをGe上から取り除けるのは興味深い反応ですね。二つのカリウムが置換基中の芳香環間に配位していることが、カルベン放出の要因でしょう。は、とカリウム/KC8との直接反応からも得ることができ、形式的に酸化数0のゲルマニウムを含む化学種です。

fig-3

さて、を単離した(カルベンを系からのぞいた)後に、もう一度酸化するとどうなるのでしょう?もうカルベンが無いので、に”I will be back”できません。

実際に著者らが[Cp2Fe][BArf4]もしくは[Ph3C][B(C6F5)4]を用いてを酸化したところ・・・

fig-4

ビニリデデンデンデデン!4を黄褐色結晶として得ることに成功しました。

固体状態の分子構造はX線構造解析によって決定しており、二つのボリル基が同一ゲルマニウム上に置換していることを確認しています。
fig-5

(左),(右)の分子構造(原著論文より引用)

では、どうしてより立体反発が低いであろうトランスベント構造ではなく、ビニリデン構造が得られたのでしょうか。鍵となっている要因は、ボリル基内の芳香環部位にあります。
まず、ボリル基同士の立体反発でB-Ge-B 結合角が142.1(6)°と、通常の三配位 sp2混成(120°)と比べ、大きく広がっていることがわかります。その結果、各ボリル基内の一つの芳香環が、Ge=Ge 部位に並行になるように近づいています。イソニトリルの炭素のように、末端のGe(2)上では、Ge=Ge π-結合と直交するかたちで空のp軌道が広がっています。上述の近接した芳香環(π電子)が、Ge(2)の空軌道を上下から挟むようにπ(Ar)-p(Ge) 相互作用することで分子を安定化していたのですね。
この相互作用の存在は理論計算によってHOMO-11に確認することができ、また溶液中においてもビニリデン構造を保持していることが、温度可変1H NMRで立証されています。

fig-6

のHOMO-11(原著論文SIより)

おそらく、トランスベント構造では分子内の立体反発はより低いのかもしれませんが、置換基の分子内配位による安定化が得られないので、総合にエネルギーを差し引きした結果としてビニリデンが最安定構造になるのだと思います。計算では、トランスベント構造よりもビニリデン構造のほうが10 kJmol-1ほど、安定だと見積もられています。

最後に

じゃあAr基が末端Ge(2)に近づけるような置換基だったらなんでもいいのかというと、そうではありません。図1のターフェニル基(by Power)にも同様のAr基がありますが、トランスベント構造してますよね。おそらく、六員環を基本骨格とするターフェニル基の場合、同一Ge上に置換すると
(1)置換基間の立体反発が大きすぎる
(2)Ar基が末端Ge中心に近づきすぎてπ(Ar)-p(Ge) 安定化どころじゃない
と想像できます。

5員環を成し得るボリル基ならではの成果だと考察できます。また、論文中では、σ供与性が強く、低原子価の典型元素に置換した場合HOMOの準位と反応性を高めるボリル基、としか言及されていませんが、そのσ供与性の高さは、置換したGe(1)原子の非混成状態からs性の高い混成の形成及び電子昇位エネルギーの減少に貢献していると考えられます。ボリル基の立体構造・電子効果双方がターゲット分子安定化にがっつりハマった成果と言えるのではないでしょうか。

近年、ボリル基を持つ様々な典型元素低配位化学種が単離されていますが、その本質的な置換基効果に目を向けることで、この分野のさらなる発展が期待できそうです。

参考文献

[1] (a)S. Nagase, K. Kobayashi, N. Takagi, J. Organomet. Chem. 2000, 611, 264. doi.org/10.1016/S0022-328X(00)00489-7
(b) M. Lein, A. Krapp, G. Frenking, G. J. Am. Chem. Soc. 2005, 127, 6290. DOI: 10.1021/ja042295c
[2] Selected examples (a) M. Stender, A. D. Phillips, R. J. Wright, P. P. Power, Angew. Chem. Int. Ed. 2002, 41, 1785. DOI: 10.1002/1521-3773(20020517)41:10<1785::AID-ANIE1785>3.0.CO;2-6
(b) Y. Sugiyama, T. Sasamori, Y. Hosoi, Y. Furukawa, N. Takagi, S. Nagase, N. Tokitoh, J. Am. Chem. Soc. 2006, 128, 1023. DOI: 10.1021/ja057205y
(c) J. Li, C. Schenk, C. Goedecke, G. Frenking, C. Jones, J. Am. Chem. Soc. 2011, 133, 18622. DOI: 10.1021/ja209215a
(d) T. J. Hadlington, M. Hermann, J. Li, G. Frenking, C. Jones, Angew. Chem. Int. Ed. 2013, 52, 10199. DOI: 10.1002/anie.201305689
[3] 村田研究室
[4] カーズ
[5] Aldridge lab

 

関連書籍

[amazonjs asin=”4885804035″ locale=”JP” title=”有機ゲルマニウムの科学―可能性に満ちた多彩な機能性の全容 (オルタナティブ選書)”] [amazonjs asin=”B017WOUHZE” locale=”JP” title=”Silicon-Germanium (Sige) Nanostructures: Production, Properties and Applications in Electronics”] [amazonjs asin=”1483171779″ locale=”JP” title=”The Chemistry of Germanium: Tin and Lead”]

関連リンク

 

関連記事

  1. 第28回Vシンポ「電子顕微鏡で分子を見る!」を開催します!
  2. 次世代の放射光施設で何が出来るでしょうか?
  3. 学生に化学論文の書き方をどうやって教えるか?
  4. 動的共有結合性ラジカルを配位子とした金属錯体の合成
  5. 薬剤師国家試験にチャレンジ!【有機化学編その1】
  6. 創薬に求められる構造~sp3炭素の重要性~
  7. アルデヒドを分液操作で取り除く!
  8. 2013年就活体験記(1)

注目情報

ピックアップ記事

  1. 転位のアスレチック!(–)-Retigeranic acid Aの全合成
  2. ルテイン / lutein
  3. 含『鉛』芳香族化合物ジリチオプルンボールの合成に成功!②
  4. 分析化学の約50年来の難問を解決、実用的な微量分析法を実現
  5. アンドリュー・ハミルトン Andrew D. Hamilton
  6. 田辺三菱 国内5番目のDPP-4阻害薬承認見通し
  7. 再生医療ーChemical Times特集より
  8. シモンズ・スミス反応 Simmons-Smith Reaction
  9. 日本プロセス化学会2005サマーシンポジウム
  10. 第163回―「微小液滴の化学から細胞系の仕組みを理解する」Wilhelm Huck教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年9月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP