[スポンサーリンク]

化学者のつぶやき

ゲルマニウムビニリデン

[スポンサーリンク]

分子の末端に” =C: ” 部位を持つ化合物として、イソニトリル(RN=C:)があります。この窒素の代わりに炭素が結合した場合に得られるアセチレンの異性体(R2C=C:)のことを、ビニリデンと言います。

高周期が変?炭素が特別?

炭素は価電子を4つ持つため、一酸化炭素(CO)やイソニトリル、カルベン(R2C:)等の例を除くと、通常、σ、π 結合あわせて四つの結合を形成します。ところがsp3、sp2、spと様々な混成を容易に形成できる炭素と異なり、高周期元素では置換基の配位数を固定すると、よりs性の低い[sp3 (25%), sp2 (33.3%), sp (50%)] 電子状態を好む傾向があります。そのため、例えばsp混成炭素を持ち直線構造を示すアセチレン(HC≡CH)とは対照的に、その高周期類縁体は、折れ曲がった構造の方がより安定であると推測されており[1]、これまでに単離されたゲルマニウムのアセチレン類縁体は、以下に示すようなトランスベント構造であることが報告されています[2]。
fig-1(それぞれ文献2より引用)

また、母体(HGeGeH)における理論計算によると、トランスベント構造 B以外の異性体 C, D, Eも、直線構造 Aより安定であることが予想されています。

fig-2

(E = Ge、原著論文より引用)

で、ちょっと待ってくださいよ、と。よくよく数字を見比べてみると、二つの水素が架橋した Dのほうが一番安定だし、CとかEに関してもBより安定じゃん、なんで B的なやつしか報告されていないの?と、思うわけです。
そこで、もう一度上に示した単離例をみてみると解る通り、置換基がでかいことに気が付くと思います。そう、置換基間の立体反発による不安定化が要因となって、置換基どうしが一番はなれた、分子内立体反発の低い Bが得られる、というわけです。

アセチレン類縁体を得たいがために、速度論的安定化効果を持つでかい置換基を用いた結果、その置換基間立体反発によって本来より安定であるはずの構造にたどり着けない、というなんとも言えない状態に至ってるんですね。いや、トランスベントはそれで素敵ですけどね。

異性体間の安定性を変えるには

なるほど、現状は分析&把握できましたね。ここからが大事。
では、どうすれば B以外の異性体を単離できるでしょうか?(と、現場の化学者はすぐに想像しちゃう癖を持ちましょー)

.二座型の置換基を開発する (→いけるかもしれないけどギャンブルね

.逆に Bの状態でも立体反発が出るくらいバカでかい置換基をつかって、B-Eにおける立体反発差を誤差にする (→ その置換基が思いつかないわ・・

.フラーレンに閉じ込める (→ M田Y次郎先生お願いします)[3]

 思いつかなくて、考えるのやめる ( →カーズ?!)[4]

.立体反発による不安定化を超える安定化効果を持つ置換基を使う(← いまここ

ゲルマニウムビニリデンを得る方法

今回、Oxford大のSimon Aldrigeらのグループ[5]によって、トランスベント構造以外の異性体が単離されたので報告したいと思います。その名も、ビニリデン。

Arnab Rit, Jesus Campos, Haoyu Niu and Simon Aldridge, Nat. Chem. 2016, doi:10.1038/nchem.2597

著者らは、ボリル基とClを置換基とするゲルミレンのカルベン付加体を出発原料とし、Mg錯体、もしくはカリウム類で還元反応を行いました。Mg錯体を用いた還元反応からは、カルベンが配位したジゲルミンが得られています。をさらにKC8で還元すると、ジアニオン種が生成しています。還元によってカルベンをGe上から取り除けるのは興味深い反応ですね。二つのカリウムが置換基中の芳香環間に配位していることが、カルベン放出の要因でしょう。は、とカリウム/KC8との直接反応からも得ることができ、形式的に酸化数0のゲルマニウムを含む化学種です。

fig-3

さて、を単離した(カルベンを系からのぞいた)後に、もう一度酸化するとどうなるのでしょう?もうカルベンが無いので、に”I will be back”できません。

実際に著者らが[Cp2Fe][BArf4]もしくは[Ph3C][B(C6F5)4]を用いてを酸化したところ・・・

fig-4

ビニリデデンデンデデン!4を黄褐色結晶として得ることに成功しました。

固体状態の分子構造はX線構造解析によって決定しており、二つのボリル基が同一ゲルマニウム上に置換していることを確認しています。
fig-5

(左),(右)の分子構造(原著論文より引用)

では、どうしてより立体反発が低いであろうトランスベント構造ではなく、ビニリデン構造が得られたのでしょうか。鍵となっている要因は、ボリル基内の芳香環部位にあります。
まず、ボリル基同士の立体反発でB-Ge-B 結合角が142.1(6)°と、通常の三配位 sp2混成(120°)と比べ、大きく広がっていることがわかります。その結果、各ボリル基内の一つの芳香環が、Ge=Ge 部位に並行になるように近づいています。イソニトリルの炭素のように、末端のGe(2)上では、Ge=Ge π-結合と直交するかたちで空のp軌道が広がっています。上述の近接した芳香環(π電子)が、Ge(2)の空軌道を上下から挟むようにπ(Ar)-p(Ge) 相互作用することで分子を安定化していたのですね。
この相互作用の存在は理論計算によってHOMO-11に確認することができ、また溶液中においてもビニリデン構造を保持していることが、温度可変1H NMRで立証されています。

fig-6

のHOMO-11(原著論文SIより)

おそらく、トランスベント構造では分子内の立体反発はより低いのかもしれませんが、置換基の分子内配位による安定化が得られないので、総合にエネルギーを差し引きした結果としてビニリデンが最安定構造になるのだと思います。計算では、トランスベント構造よりもビニリデン構造のほうが10 kJmol-1ほど、安定だと見積もられています。

最後に

じゃあAr基が末端Ge(2)に近づけるような置換基だったらなんでもいいのかというと、そうではありません。図1のターフェニル基(by Power)にも同様のAr基がありますが、トランスベント構造してますよね。おそらく、六員環を基本骨格とするターフェニル基の場合、同一Ge上に置換すると
(1)置換基間の立体反発が大きすぎる
(2)Ar基が末端Ge中心に近づきすぎてπ(Ar)-p(Ge) 安定化どころじゃない
と想像できます。

5員環を成し得るボリル基ならではの成果だと考察できます。また、論文中では、σ供与性が強く、低原子価の典型元素に置換した場合HOMOの準位と反応性を高めるボリル基、としか言及されていませんが、そのσ供与性の高さは、置換したGe(1)原子の非混成状態からs性の高い混成の形成及び電子昇位エネルギーの減少に貢献していると考えられます。ボリル基の立体構造・電子効果双方がターゲット分子安定化にがっつりハマった成果と言えるのではないでしょうか。

近年、ボリル基を持つ様々な典型元素低配位化学種が単離されていますが、その本質的な置換基効果に目を向けることで、この分野のさらなる発展が期待できそうです。

参考文献

[1] (a)S. Nagase, K. Kobayashi, N. Takagi, J. Organomet. Chem. 2000, 611, 264. doi.org/10.1016/S0022-328X(00)00489-7
(b) M. Lein, A. Krapp, G. Frenking, G. J. Am. Chem. Soc. 2005, 127, 6290. DOI: 10.1021/ja042295c
[2] Selected examples (a) M. Stender, A. D. Phillips, R. J. Wright, P. P. Power, Angew. Chem. Int. Ed. 2002, 41, 1785. DOI: 10.1002/1521-3773(20020517)41:10<1785::AID-ANIE1785>3.0.CO;2-6
(b) Y. Sugiyama, T. Sasamori, Y. Hosoi, Y. Furukawa, N. Takagi, S. Nagase, N. Tokitoh, J. Am. Chem. Soc. 2006, 128, 1023. DOI: 10.1021/ja057205y
(c) J. Li, C. Schenk, C. Goedecke, G. Frenking, C. Jones, J. Am. Chem. Soc. 2011, 133, 18622. DOI: 10.1021/ja209215a
(d) T. J. Hadlington, M. Hermann, J. Li, G. Frenking, C. Jones, Angew. Chem. Int. Ed. 2013, 52, 10199. DOI: 10.1002/anie.201305689
[3] 村田研究室
[4] カーズ
[5] Aldridge lab

 

関連書籍

関連リンク

 

関連記事

  1. 「重曹でお掃除」の化学(その1)
  2. 光刺激で超分子ポリマーのらせんを反転させる
  3. Micro Flow Reactor ~革新反応器の世界~ (入…
  4. 文具に凝るといふことを化学者もしてみむとてするなり⑨:トラックボ…
  5. がん細胞をマルチカラーに光らせる
  6. 2013年(第29回)日本国際賞 受賞記念講演会
  7. 香りの化学4
  8. 第一手はこれだ!:古典的反応から最新反応まで|第6回「有機合成実…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. はてブ週間ランキング第四位を獲得
  2. O-アシルイソペプチド法 O-acylisopeptide Method
  3. 即戦力のコンパクトFTIR:IRSpirit
  4. α‐リポ酸の脂肪蓄積抑制作用を高める効果を実証
  5. バイオ医薬 基礎から開発まで
  6. 有機分子触媒の化学 -モノづくりのパラダイムシフト
  7. 日本国際賞―受賞化学者一覧
  8. アルケンでCatellani反応: 長年解決されなかった副反応を制御した
  9. トリクロロアニソール (2,4,6-trichloroanisole)
  10. MSI.TOKYO「MULTUM-FAB」:TLC感覚でFAB-MS測定を!(1)

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

アカデミックから民間企業へ転職について考えてみる 第三回

カデミックから民間企業へ転職した場合、入社後にギャップを感じる人が少なからずいます。もちろん、どんな…

第142回―「『理想の有機合成』を目指した反応開発と合成研究」山口潤一郎 教授

第142回の化学者インタビューは日本から、皆さんご存じ、山口潤一郎教授の登場です。名古屋大学理学部化…

【書籍】ゼロからの最速理解 プラスチック材料化学

今月発売された『ゼロからの最速理解 プラスチック材料化学』(佐々木 健夫 著,コロナ社)という書籍を…

重水は甘い!?

同位体はある元素、すなわち同一の原子番号をもつ原子核において、中性子数の異なる核種のことをいいますね…

人物でよみとく化学

概要化学の歴史をつくった約50人を収録。高校・大学の化学の勉強に役立つ16テーマをあつかい、…

金属ナトリウム分散体(SD Super Fine ™)

概要金属ナトリウム分散体(SD Super Fine &#x2122;)は、金属ナトリウムの微粒…

アクセラレーションプログラム 「BRAVE 2021 Spring」 参加チームのエントリー受付中!(5/10〆切)

Beyond Next Ventures株式会社(本社:東京都中央区、代表取締役社⻑:伊藤毅、以下「…

赤キャベツから新しい青色天然着色料を発見 -青色1号に代わる美しく安定なアントシアニン色素-

青の食品着色料として広く使われる化学合成の「青色1号」とほぼ同じ色で、長期保存時の安定性に優れた天然…

Chem-Station Twitter

PAGE TOP