[スポンサーリンク]

試薬

酢酸ウラニル(VI) –意外なところから見つかる放射性物質–

[スポンサーリンク]

 

酢酸ウラニル(VI) (UO2(CH3COO)2·2H2O) はウラニル (二酸化ウラン、UO22+) の酢酸塩で、黄緑色の蛍光を有する結晶性固体である。劣化ウランを原料とし、酢酸を反応させることで産生される。放射性を持つが、その放射能は含まれるウラン同位体によって異なる。

構造

酢酸ウラニル(VI)二水和物の構造

結晶ポリマー中では、ウラニル(UO22+)中心は酢酸配位子によって架橋されている。残った配位圏には、アクア配位子と二座の酢酸配位子が結合している。また、結晶格子中には結晶水を1個含む。

酢酸ウラニルの結晶構造

用途

透過型電子顕微鏡 (TEM) による生体切片の観察時などに、ネガティブ染色用の染色剤として用いられる。生物組織を重金属塩で染色することで、構造の保持とコントラストの向上を図ることができる。酢酸ウラニル (もしくは硝酸ウラニル) は簡便な染色ができ、リンタングステン酸などの他の染色剤に比べ特に高いコントラストが得られるため現在でも汎用されている。

原子力規制委員会HP–管理下にない放射性物質を見つけたらより引用

また酢酸ウラニルは、セメントやコンクリートへの使用を検討している骨材(砕石または砂利)のアルカリシリカ反応性に関する標準試験にも使用されている (参考サイト)。

毒性

重金属としての毒性を示し、特にウラン塩は腎毒性が顕著である。酢酸ウラニルの放射能は一般的に弱く、体外からの被曝の心配はほとんどない。しかし、酢酸ウラニルの直接摂取、吸引、創傷部位への付着に関しては体内被曝の可能性があり有毒であると考えられる。

法規制と問題点

管理下にない核燃料物質等の発見事例として、酢酸ウラニルは頻繁に挙がる物質である。2024年現在、酢酸ウラニルは核燃料である「国際規制物資」に指定され、法律によって厳しい保管管理が義務付けられている。しかしながら、昭和50年代前半以前の核燃料物質等の管理については、研究者や管理者の管理に関する認識が十分ではなく、受け渡しや廃棄の管理が十分行われていなかったとされ (参考資料)、研究室の古い試薬棚の奥底などから発見される事例が後を絶たない。原子力規制委員会では、以下のような冊子を作成し未登録放射性物質の存在に注意喚起を行っている。

原子力規制委員会HP–管理下にない放射性物質を見つけたらより引用

酢酸ウラニル等が見つかる経緯として、長らく使用されていなかった実験室や試薬庫の片付け、研究室の移動・引越し・代替わりに伴う整理などが多いようである。

現在は、放射性物質を使っていなくても、過去に使っていたものが放置されていた事例が多く見られます。今使っていないからといっても、安心は出来ません。

例えば、戸棚の奥、人の立入らない倉庫の中、最近開けていない金庫の中等から、20~30年以上前に使っていた放射性物質が発見されています。 特に古い荷物を片付けるときはご注意下さい。

原子力規制委員会HP–管理下にない放射性物質を見つけたらより引用

放射性物質の種類と規制について

酢酸ウラニル硝酸ウラニルは「国際規制物資」に該当し、放射能の多寡に関わらず保有・使用の許可が必要となる。
また使用後は施設内において「永久保存」となる。

実際の発見例

個々の大学や研究機関の名を挙げるのは避けるが、Google で「酢酸ウラニル 発見」などと検索すると、令和 5 年に至るまで非常に多くの期間で未登録・入手元不明の状態で発見されていることがありありと分かる。ある大学では、ラベルの状態などから 30~40 年前の試薬と判断したようであり、やはり規制の緩かった時代に納入された試薬が眠っていたという事例が多いようである。

基本的に、放射能の弱さから人体への影響はほぼないとされるが、発見された際は原子力規制委員会や行政への届出が必要である。

おわりに

酢酸ウラニルなどの放射性物質のみならず、毒劇物・向精神薬など届出が必要な試薬が死蔵されている研究室・倉庫などはこれからも多く見つかってくると思います。適切な対処を行えば大抵の場合大きな問題にはならないはずですので、もし試薬整理などで発見した際は研究室の教員に報告し、しかるべき対処を取る必要があります。

関連書籍

[amazonjs asin=”4627157517″ locale=”JP” title=”放射線物理学”] [amazonjs asin=”4758322600″ locale=”JP” title=”第1種放射線取扱主任者試験 重要問題集中トレーニング−3rd edition”]

 

Avatar photo

DAICHAN

投稿者の記事一覧

創薬化学者と薬局薬剤師の二足の草鞋を履きこなす、四年制薬学科の生き残り。
薬を「創る」と「使う」の双方からサイエンスに向き合っています。
しかし趣味は魏志倭人伝の解釈と北方民族の古代史という、あからさまな文系人間。
どこへ向かうかはfurther research is needed.

関連記事

  1. ゲラニオール
  2. エンテロシン Enterocin
  3. 亜酸化窒素 Nitrous oxide
  4. プラテンシマイシン /platensimycin
  5. テトロドトキシン Tetrodotoxin
  6. コルチスタチン /Cortistatin
  7. ボンビコール /bombykol
  8. シコニン

注目情報

ピックアップ記事

  1. 小説『ラブ・ケミストリー』聖地巡礼してきた
  2. PACIFICHEM2010に参加してきました!①
  3. 論文・学会発表に役立つ! 研究者のためのIllustrator素材集: 素材アレンジで描画とデザインをマスターしよう!
  4. Pythonで学ぶ実験計画法入門 ベイズ最適化によるデータ解析
  5. ジョン・ケンドリュー John C. Kendrew
  6. うっかりドーピングの化学 -禁止薬物と該当医薬品-
  7. 抗精神病薬として初めての口腔内崩壊錠が登場
  8. はやぶさ2が持ち帰った有機化合物
  9. 第160回―「触媒的ウィッティヒ反応の開発」Christopher O’Brien博士
  10. 育て!燃料電池を担う子供たち

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年5月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

河村奈緒子 Naoko Komura

河村 奈緒子(こうむら なおこ, 19xx年xx月xx日-)は、日本の有機化学者である。専門は糖鎖合…

分極したBe–Be結合で広がるベリリウムの化学

Be–Be結合をもつ安定な錯体であるジベリロセンの配位子交換により、分極したBe–Be結合形成を初め…

小松 徹 Tohru Komatsu

小松 徹(こまつ とおる、19xx年xx月xx日-)は、日本の化学者である。東京大学大学院薬学系研究…

化学CMアップデート

いろいろ忙しくてケムステからほぼ一年離れておりましたが、少しだけ復活しました。その復活第一弾は化学企…

固有のキラリティーを生むカリックス[4]アレーン合成法の開発

不斉有機触媒を利用した分子間反応により、カリックスアレーンを構築することが可能である。固有キラリ…

服部 倫弘 Tomohiro Hattori

服部 倫弘 (Tomohiro Hattori) は、日本の有機化学者。中部大学…

ぱたぱた組み替わるブルバレン誘導体を高度に置換する

容易に合成可能なビシクロノナン骨格を利用した、簡潔でエナンチオ選択的に多様な官能基をもつバルバラロン…

今年は Carl Bosch 生誕 150周年です

Tshozoです。タイトルの件、本国で特に大きなイベントはないようなのですが、筆者が書かずに誰が…

ペンタフルベンが環構築の立役者!Bipolarolide D の全合成

4つの五員環が連結するユニークな構造をもつ天然物bipolarolide Dの全合成を達成した。エナ…

植物由来アルカロイドライブラリーから新たな不斉有機触媒の発見

第632回のスポットライトリサーチは、千葉大学大学院医学薬学府(中分子化学研究室)博士課程後期3年の…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP