[スポンサーリンク]

化学者のつぶやき

微生物の電気でリビングラジカル重合

[スポンサーリンク]

テキサス大学オースティン校のBenjamin K. Keitz教授らは、電気を発生する微生物によって金属触媒の活性をコントロールし、リビングラジカル重合(ATRP)を行うことに成功しました。

“Shewanella oneidensis as a living electrode for controlled radical polymerization”

Fan, G.; Dundas, C. M.; Graham, A. J.;  Lynd, N. A.; Keitz, B. K. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 4559. DOI: 10.1073/pnas.1800869115

1. 微生物を使った化合物合成

微生物を使って有用な化合物を作ることは、産業の様々な場面で行われています。乳酸菌を使ってチーズを作ったり、酵母を使ってバイオエタノールを作ったりなどがその例です。このような技術は基本的に、微生物がもともと行っている化学反応を利用しているのですが、近年では遺伝子操作によって微生物が本来作らない化合物を作らせるようにするという試みも盛んになされています。

しかし、生物の代謝経路を作り変えるためには、(1) 原料物質の細胞内への輸送、(2) 目的の反応を行うための酵素の導入や発現調節、(3) 元々ある代謝経路の抑制、(4) 生成物の細胞外輸送など、調整しなければならない点がたくさんあって困難です(図1)。そのため多くの場合、微生物に作らせることができる化合物は天然の代謝経路に沿ったものに限られてしまいます。

図1. 代謝経路の再構築における様々な問題点。

テキサス大学オースティン校のKeitz教授らは、代謝によって電流を発生するシュワネラ菌という微生物に着目し、この電流を化学反応に有効利用できないかと考えました。彼らは、シュワネラ菌が乳酸の代謝から生み出す電流を使って細胞外にある銅触媒の活性をコントロールし、リビングラジカル重合(ATRP)を行うことに成功しました。

2. 電気を生み出すシュワネラ菌

Keitz教授らが用いたシュワネラ菌という発電菌は、細胞膜のタンパクを使って電子を外に放出しています(図2)。外膜上にあるMtrCやOmcAは、比較的低い電位(-350mVから+50 mV程度)を保っているため、細胞外にある金属イオンや有機化合物を還元する(電子を与える)ことができます。

図2. シュワネラ菌の細胞膜における電子移動。(左の画像はmicrobewikiより)

3. シュワネラ菌によるラジカル重合

Keitz教授らは、シュワネラ菌の電流で金属触媒の活性をコントロールできるか調べるため、モデル反応として原子移動ラジカル重合(ATRPを行うことにしました。ATRPでは、還元型の金属触媒が、ハロゲン原子にキャップされた不活性型のポリマー末端(ドーマント種)と反応し、ラジカル性の活性種を生み出します。生まれた活性種は、モノマーと反応してポリマー鎖を伸長させます。彼らが行った反応の流れは以下の通りです。

  1. シュワネラ菌が乳酸の代謝により細胞外に電子を放出する。
  2. 細胞外に存在する金属が還元される。
  3. 還元型の金属がドーマント種と反応してポリマー末端を活性化する。
  4. ポリマー鎖が伸長する。

図3. シュワネラ菌の乳酸代謝とラジカル重合の流れ。

彼らは、モノマー・開始剤・金属触媒(Cu(II)またはFe(III), Co(III))を含む培地にて、嫌気性条件でシュワネラ菌を培養しました。24時間後に溶液を確認すると、粘性のあるポリマーが生じていることが分かりました。得られるポリマーは分子量分布が狭く(PDI ~1.1)、分子量がモノマー転化率に比例している、というリビング重合の特徴を示しています(図4a)。また、一定時間経った後にモノマーを追加しても、初期と同様の速度定数でポリマーが伸長する様子も確認されました(図4b)。

図4. (a) 各モノマー転化率におけるポリマーの分子量と分子量分布(PDI)。(b) モノマー濃度の対数値(初期値/残存量)の時間変化。(論文より)プロットが直線的で傾きが一定あることから、1次反応で反応定数が一定であることがわかる。

4. 反応速度は代謝にコントロールされる

それでは、このラジカル重合は、シュワネラ菌の代謝反応とどう関連しているのでしょうか。シュワネラ菌は、乳酸→ピルビン酸、ピルビン酸→…→酢酸の代謝過程でそれぞれ2つの電子を生み出すことが分かっています(図5a)。Keitz教授らは、シュワネラ菌に異なる炭素源(乳酸(Lactate)、ピルビン酸(Pyruvate)、酢酸(Acetate)、何も与えない(Starved))を与えた場合の重合反応速度を調べました。すると、代謝にて4電子を生み出す乳酸の存在下で一番早い反応速度が得られ、その次に2電子を生み出すピルビン酸、そして電子を生まない酢酸存在下で一番遅い反応速度が得られるということが分かりました。酢酸存在下での反応速度は、何も与えない場合(Starved)と同程度でした。これらの結果から、代謝によって生まれる電子と重合反応速度に相関があることが分かりました。

図5. (a) シュワネラ菌の代謝経路。(b) 各炭素源存在下におけるラジカル重合速度(論文より)。

5. おわりに

今回の論文では、微生物が生み出す電気を利用すれば、生体反応に限らず産業に有用な様々な化学反応が行えるという可能性が示されました。特に有機電気化学合成の分野では、従来型のフラスコでの反応よりも収率・選択性・環境負荷の面で優れた反応が行えるよう研究が進められているので、今後、ATRPに限らず様々な反応に発電菌が応用されることが期待されます。

参考文献

  1. Magenau, A. J.; Strandwitz, N. C.; Gennaro, A.; Matyjaszewski, K. Science 2011, 332, 81. DOI: 10.1126/science.1202357
  2. Sakimoto, K. K.; Wong, A. B.; Yang, P. Science 2016, 351, 74.
DOI: 10.1126/science.aad3317

関連リンク

関連書籍

The following two tabs change content below.
kanako

kanako

大学院生。化学科、ケミカルバイオロジー専攻。趣味はスポーツで、アルティメットフリスビーにはまり中。

関連記事

  1. 第97回日本化学会春季年会 付設展示会ケムステキャンペーン Pa…
  2. 近況報告Part III
  3. サイエンスアゴラ2015総括
  4. 抗結核薬R207910の不斉合成
  5. その実験結果信用できますか?
  6. 酵母菌に小さなソーラーパネル
  7. 無保護糖を原料とするシアル酸誘導体の触媒的合成
  8. 結晶学分野に女性研究者が多いのは何故か?

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ウーロン茶の中でも医薬品の化学合成が可能に
  2. 採用面接で 「今年の日本化学会では発表をしますか?」と聞けば
  3. 春田 正毅 Masatake Haruta
  4. かぶれたTシャツ、原因は塩化ジデシルジメチルアンモニウム
  5. 熊田誠氏死去(京大名誉教授)=有機ケイ素化学の権威
  6. 三菱化学が有機太陽電池事業に参入
  7. サーバーを移転しました
  8. アミノ酸「ヒスチジン」が脳梗塞に有効――愛媛大が解明
  9. 就職か進学かの分かれ道
  10. 金属カルベノイドのC-H挿入反応 C-H Insertion of Metal Carbenoid

関連商品

注目情報

注目情報

最新記事

柔軟な小さな分子から巨大環状錯体を組み上げる ~人工タンパク質への第一歩~

第205回のスポットライトリサーチは、お茶の水女子大学 基幹研究院自然科学系・三宅 亮介 先生 にお…

光触媒を用いるスピロ環合成法が創薬の未来を明るく照らす

可視光光触媒を用いたスピロ環骨格構築法が報告された。創薬分野においてsp3炭素豊富な骨格は、構造、活…

日本初の化学専用オープンコミュニティ、ケムステSlack始動!

もし日常的に、様々な分野の日本中の化学徒・研究者と、最先端の化学について自由闊達に議論を交わし合い、…

HACCP制度化と食品安全マネジメントシステムーChemical Times特集より

関東化学が発行する化学情報誌「ケミカルタイムズ」。年4回発行のこの無料雑誌の紹介をしています。…

農薬メーカの事業動向・戦略について調査結果を発表

 この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=川原喜治)は、農薬…

書店で気づいたこと ~電気化学の棚の衰退?~

Tshozoです。少し短いですが以前から気になっていたので書いておきます。また少々電気化学系…

Chem-Station Twitter

PAGE TOP