[スポンサーリンク]

化学者のつぶやき

化学エネルギーを使って自律歩行するゲル

[スポンサーリンク]

(動画はNewScientistより)

このほど早稲田大学の研究グループから、化学エネルギーを利用して自律歩行するゲル材料が発表されました[2]

百聞は一見にしかず。ムービーをまずはご覧ください。

オレンジ色をした高分子ゲルが、まるで尺取り虫のように、ひとりでに前進歩行するという、驚くべき様子が収められています。

さらに驚くべきことには、ゲルを水溶液中に浸すだけで動くというのです。 外部刺激によって人為的にコントロールする必要はありません。

果たしてこの素材、どんな成分で出来ていて、どんな原理で歩行しているのでしょうか!?

この高分子ゲルは、ルテニウムトリスビピリジン(Ru(bpy)32+)錯体、N-イソプロピルアクリルアミド(NIPPAm)、架橋目的のビスアクリルアミド(MBAAm)、スルホン酸アクリルアミド(AMPS)を共重合させて合成されています。

 

しかしこれだけでは、もちろん望む動きは起きません。

以下の4点が、カラクリを理解するためのポイントになります。

 

①化学振動(chemical oscillation)機構を組み込む
②環境(温度)応答性のあるポリマーを素材として使う
③成分濃度に勾配を付け、形状変化を非対称にする
④一方向へ歩行させるべく、床表面の凹凸をデザインする

 

① 化学振動
Ru(bpy)32+錯体は、ベロウソフ・ジャボチンスキー反応(BZ反応)という化学振動反応の触媒として機能します。BZ反応の基質(マロン酸+臭素酸ナトリウム+希硝酸)溶液にゲルを浸すと、ゲル内部でRu(II)←→Ru(III)の化学振動が生じます。

②温度応答性ポリマー
構成成分となっているポリN-イソプロピルアクリルアミド(PNIPPAm)は、下部完溶温度(lower critical solution temperature; LCST)よりも低温で親水性、高温で疎水性となることが知られています。親水性時には、ゲル内に水が取り込まれ、膨潤します。また、LCSTの値はポリマーの電荷とも対応することが知られています。
すなわち、Ru(III)←→Ru(II)の電価振動に対応した、ポリマー膨潤度のコントロールが期待できます。

①②を組み合わせるだけでも、、実のところゲル振動を起こすことは可能[3]です。しかし肉眼で見えるほど大きな動きにするには、もう一工夫が必要となったようです。

③成分濃度勾配をもつポリマーの合成
親水性のガラスプレート、疎水性のテフロンプレートでモノマー溶液をサンドイッチし、その状態で重合を起こします。こうすると、ガラス側にはAMPSが、テフロン側にはルテニウム錯体が引き寄せられた状態から重合がおこります。このようにして、成分濃度の勾配を持ったポリマーが作成されます。AMPS濃度が高い上面ほど、水が沢山取り込まれ、膨潤率が下面よりも大きくなります。このためゲルは、図のように曲がった形状をとります。もちろん、応答の大きさにも面上下で差異が生じます。

 

chemical_robot_2.gif

 

酸化状態(Ru(III))では、ゲルは縮み大きく曲がる逆に還元状態(Ru(II))では、ゲルが弛緩し伸びた状態になるということが、対照実験により明らかとされています。

 

BZ条件下においては、このレドックスが繰り返され、ゲルの曲率が周期的に変化します。このようなメカニズムゆえ、左右方向への形状変化は、厳密には非対称ではありません。

それでも一方向だけにゲルが動くのはなぜなのでしょうか?
それは、④床にカラクリがあるからです。
彼らは下図のような鋸歯形状の床をデザインし、急勾配の引っかかりをつけて、乗り越えられないようにしているのです。つまり、歯止め機構(ratchet mechanism)でゲルが一方向に移動している、というわけです。

 

chemical_robot_3.gif

相当量のアイデアが詰まっており、おそらく実現までに無数のハードルがあったものと推測されます。かなりチャレンジングな研究に思えます。

実はこの仕事、化学系研究室ではなく、ヒューマノイド研究所主導で行われています。すなわち、電気を使わず”化学エネルギーを使って動くロボット”への将来的応用を見越し、この研究に取り組んでいるというわけなのです。
そのようなコンセプトを、彼らは“ケミカルロボティクス(chemical robotics)”と総称しています。金属などを構成成分とするものと比べて、生体適合性(biocompatibility)に優れた機構が作れる、というのが最大のアドバンテージとなるでしょうか。

 

とはいえ、ケミカルロボティクス自体、ロボット業界ではマイナそのものな取り組みのようです。既存のロボットに比べ制約が多すぎるのが難点だそうで、例えば以下のようなものがざっと考え得るようです。

環境制限 (水or油の中でしか動作しない)
動作制限 (動作範囲が狭く実用的ではない)
保守困難 (メンテナンスが面倒で、かつ壊れやすい)
分野横断的困難 (ロボット工学で薬品を扱うことのハードル)

既存の電動機構に取って代わることは、当分無さそうでしょうか。とはいえ、このゲル材料が相応のクオリティにまで進歩すれば、ロボットに限定せずとも、人工筋肉など多彩な応用が期待できるように思えます。

化学からほど遠そうなイメージのロボット研究者が、こんな研究を実行し、意味あるものを作り上げてしまう事実には、ただただ舌を巻かざるを得ません。

 

ロボットとは無関係な化学界に身を置く筆者ですが、こういった意欲的研究には、最大限のエールを贈りたいと思います。

 

  • 関連文献
[1] review: Paxton, W. F.; Sundararajan, S.; Mallouk, T. E.; Sen, A. Angew. Chem. Int. Ed. 2006, 45, 5420. doi:10.1002/anie.200600060

[2] (a) Maeda, S.; Hara, Y.; Yoshida, R.;  Hashimoto, S. Abstract of Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems (b) Maeda, S.; Hara, Y.; Yoshida, R.; Hashimoto, S. Advanced Robotics 2008, 22, 1329. DOI:10.1163/156855308X344855

[3] (a) Maeda, S.; Hara, Y.; Yoshida, R.; Hashimoto, S. Angew. Chem. Int. Ed. 2008, 47, 6690. DOI : 10.1002/anie.200801347 (b) Shinohara, S.-i.; Seki, T.; Sakai, T.; Yoshida, R.; Takeoka, Y. Angew. Chem. Int. Ed. 2008, 47, 9039. DOI : 10.1002/anie.200803046

 

  • 関連リンク

早稲田大学・橋本周司研究室

電場応答性高分子ゲルロボット

東京大学・吉田亮研究室

東京大学・大武美保子研究室

Belousov-Zhabotinsky Reaction – Wikipedia

ベロウソフ・ジャボチンスキー反応 – Wikipedia

Chemical ‘caterpillar’ points to electronics-free robots (NewScientist)

Electronics-Free Robots (the future of things)

変身ロボットのアイデアをDARPAが募集

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 半導体ナノ結晶に配位した芳香族系有機化合物が可視光線で可逆的に脱…
  2. 【22卒就活イベント(東京・大阪)/修士1年 技術系職種志望者対…
  3. 無機物のハロゲンと有機物を組み合わせて触媒を創り出すことに成功
  4. 化学物質の管理が厳格化! -リスクアセスメント-
  5. プリンターで印刷できる、電波を操る人工スーパー材料
  6. Keith Fagnou Organic Chemistry S…
  7. (−)-Salinosporamide Aの全合成
  8. マテリアルズ・インフォマティクスの推進を加速させるためには?

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第141回―「天然と人工の高分子を融合させる」Sébastien Perrier教授
  2. アンモニアを用いた環境調和型2級アミド合成
  3. 2005年6月分の気になる化学関連ニュース投票結果
  4. 機械的刺激による結晶間相転移に基づく発光性メカノクロミズム
  5. 京都賞―受賞化学者一覧
  6. 根岸試薬(Cp2Zr) Negishi Reagent
  7. 【第一三共】抗血小板薬「プラスグレル」が初承認‐欧州で販売へ
  8. ノーベル医学生理学賞、米の2氏に
  9. ビニグロールの全合成
  10. ブルース・ギブ Bruce C. Gibb

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

塩基が肝!シクロヘキセンのcis-1,3-カルボホウ素化反応

ニッケル触媒を用いたシクロヘキセンの位置および立体選択的なカルボホウ素化反応が開発された。用いる塩基…

中国へ行ってきました 西安・上海・北京編①

2015年(もう8年前ですね)、中国に講演旅行に行った際に記事を書きました(実は途中で断念し最後まで…

アゾ重合開始剤の特徴と選び方

ラジカル重合はビニルモノマーなどの重合に用いられる方法で、開始反応、成長反応、停止反応を素反応とする…

先端事例から深掘りする、マテリアルズ・インフォマティクスと計算科学の融合

開催日:2023/12/20 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

最新の電子顕微鏡法によりポリエチレン分子鎖の向きを可視化することに成功

第583回のスポットライトリサーチは、東北大学大学院 工学研究科 応用化学専攻 陣内研究室の狩野見 …

\脱炭素・サーキュラーエコノミーの実現/  マイクロ波を用いたケミカルリサイクル・金属製錬プロセスのご紹介

※本セミナーは、技術者および事業担当者向けです。脱炭素化と省エネに貢献するモノづくり技術の一つと…

【書籍】女性が科学の扉を開くとき:偏見と差別に対峙した六〇年 NSF(米国国立科学財団)長官を務めた科学者が語る

概要米国の女性科学者たちは科学界のジェンダーギャップにどのように向き合い,変えてきたのか ……

【太陽ホールディングス】新卒採用情報(2025卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

細胞代謝学術セミナー全3回 主催:同仁化学研究所

細胞代謝研究をテーマに第一線でご活躍されている先生方をお招きし、同仁化学研究所主催の学術セミナーを全…

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2023/12/06 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP