[スポンサーリンク]

化学者のつぶやき

化学エネルギーを使って自律歩行するゲル

[スポンサーリンク]

(動画はNewScientistより)

このほど早稲田大学の研究グループから、化学エネルギーを利用して自律歩行するゲル材料が発表されました[2]

百聞は一見にしかず。ムービーをまずはご覧ください。

オレンジ色をした高分子ゲルが、まるで尺取り虫のように、ひとりでに前進歩行するという、驚くべき様子が収められています。

さらに驚くべきことには、ゲルを水溶液中に浸すだけで動くというのです。 外部刺激によって人為的にコントロールする必要はありません。

果たしてこの素材、どんな成分で出来ていて、どんな原理で歩行しているのでしょうか!?

この高分子ゲルは、ルテニウムトリスビピリジン(Ru(bpy)32+)錯体、N-イソプロピルアクリルアミド(NIPPAm)、架橋目的のビスアクリルアミド(MBAAm)、スルホン酸アクリルアミド(AMPS)を共重合させて合成されています。

 

しかしこれだけでは、もちろん望む動きは起きません。

以下の4点が、カラクリを理解するためのポイントになります。

 

①化学振動(chemical oscillation)機構を組み込む
②環境(温度)応答性のあるポリマーを素材として使う
③成分濃度に勾配を付け、形状変化を非対称にする
④一方向へ歩行させるべく、床表面の凹凸をデザインする

 

① 化学振動
Ru(bpy)32+錯体は、ベロウソフ・ジャボチンスキー反応(BZ反応)という化学振動反応の触媒として機能します。BZ反応の基質(マロン酸+臭素酸ナトリウム+希硝酸)溶液にゲルを浸すと、ゲル内部でRu(II)←→Ru(III)の化学振動が生じます。

②温度応答性ポリマー
構成成分となっているポリN-イソプロピルアクリルアミド(PNIPPAm)は、下部完溶温度(lower critical solution temperature; LCST)よりも低温で親水性、高温で疎水性となることが知られています。親水性時には、ゲル内に水が取り込まれ、膨潤します。また、LCSTの値はポリマーの電荷とも対応することが知られています。
すなわち、Ru(III)←→Ru(II)の電価振動に対応した、ポリマー膨潤度のコントロールが期待できます。

①②を組み合わせるだけでも、、実のところゲル振動を起こすことは可能[3]です。しかし肉眼で見えるほど大きな動きにするには、もう一工夫が必要となったようです。

③成分濃度勾配をもつポリマーの合成
親水性のガラスプレート、疎水性のテフロンプレートでモノマー溶液をサンドイッチし、その状態で重合を起こします。こうすると、ガラス側にはAMPSが、テフロン側にはルテニウム錯体が引き寄せられた状態から重合がおこります。このようにして、成分濃度の勾配を持ったポリマーが作成されます。AMPS濃度が高い上面ほど、水が沢山取り込まれ、膨潤率が下面よりも大きくなります。このためゲルは、図のように曲がった形状をとります。もちろん、応答の大きさにも面上下で差異が生じます。

 

chemical_robot_2.gif

 

酸化状態(Ru(III))では、ゲルは縮み大きく曲がる逆に還元状態(Ru(II))では、ゲルが弛緩し伸びた状態になるということが、対照実験により明らかとされています。

 

BZ条件下においては、このレドックスが繰り返され、ゲルの曲率が周期的に変化します。このようなメカニズムゆえ、左右方向への形状変化は、厳密には非対称ではありません。

それでも一方向だけにゲルが動くのはなぜなのでしょうか?
それは、④床にカラクリがあるからです。
彼らは下図のような鋸歯形状の床をデザインし、急勾配の引っかかりをつけて、乗り越えられないようにしているのです。つまり、歯止め機構(ratchet mechanism)でゲルが一方向に移動している、というわけです。

 

chemical_robot_3.gif

相当量のアイデアが詰まっており、おそらく実現までに無数のハードルがあったものと推測されます。かなりチャレンジングな研究に思えます。

実はこの仕事、化学系研究室ではなく、ヒューマノイド研究所主導で行われています。すなわち、電気を使わず”化学エネルギーを使って動くロボット”への将来的応用を見越し、この研究に取り組んでいるというわけなのです。
そのようなコンセプトを、彼らは“ケミカルロボティクス(chemical robotics)”と総称しています。金属などを構成成分とするものと比べて、生体適合性(biocompatibility)に優れた機構が作れる、というのが最大のアドバンテージとなるでしょうか。

 

とはいえ、ケミカルロボティクス自体、ロボット業界ではマイナそのものな取り組みのようです。既存のロボットに比べ制約が多すぎるのが難点だそうで、例えば以下のようなものがざっと考え得るようです。

環境制限 (水or油の中でしか動作しない)
動作制限 (動作範囲が狭く実用的ではない)
保守困難 (メンテナンスが面倒で、かつ壊れやすい)
分野横断的困難 (ロボット工学で薬品を扱うことのハードル)

既存の電動機構に取って代わることは、当分無さそうでしょうか。とはいえ、このゲル材料が相応のクオリティにまで進歩すれば、ロボットに限定せずとも、人工筋肉など多彩な応用が期待できるように思えます。

化学からほど遠そうなイメージのロボット研究者が、こんな研究を実行し、意味あるものを作り上げてしまう事実には、ただただ舌を巻かざるを得ません。

 

ロボットとは無関係な化学界に身を置く筆者ですが、こういった意欲的研究には、最大限のエールを贈りたいと思います。

 

  • 関連文献
[1] review: Paxton, W. F.; Sundararajan, S.; Mallouk, T. E.; Sen, A. Angew. Chem. Int. Ed. 2006, 45, 5420. doi:10.1002/anie.200600060

[2] (a) Maeda, S.; Hara, Y.; Yoshida, R.;  Hashimoto, S. Abstract of Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems (b) Maeda, S.; Hara, Y.; Yoshida, R.; Hashimoto, S. Advanced Robotics 2008, 22, 1329. DOI:10.1163/156855308X344855

[3] (a) Maeda, S.; Hara, Y.; Yoshida, R.; Hashimoto, S. Angew. Chem. Int. Ed. 2008, 47, 6690. DOI : 10.1002/anie.200801347 (b) Shinohara, S.-i.; Seki, T.; Sakai, T.; Yoshida, R.; Takeoka, Y. Angew. Chem. Int. Ed. 2008, 47, 9039. DOI : 10.1002/anie.200803046

 

  • 関連リンク

早稲田大学・橋本周司研究室

電場応答性高分子ゲルロボット

東京大学・吉田亮研究室

東京大学・大武美保子研究室

Belousov-Zhabotinsky Reaction – Wikipedia

ベロウソフ・ジャボチンスキー反応 – Wikipedia

Chemical ‘caterpillar’ points to electronics-free robots (NewScientist)

Electronics-Free Robots (the future of things)

変身ロボットのアイデアをDARPAが募集

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 実験と機械学習の融合!ホウ素触媒反応の新展開と新理解
  2. ポンコツ博士の海外奮闘録④ ~博士,ろ過マトる~
  3. 神経細胞の伸長方向を光で操る
  4. マテリアルズ・インフォマティクスの導入・活用・推進におけるよくあ…
  5. 英文読解の負担を減らすマウスオーバー辞書
  6. 単結合を極める
  7. 第16回日本化学連合シンポジウム「withコロナ時代における化学…
  8. ポンコツ博士の海外奮闘録⑧〜博士,鍵反応を仕込む②〜

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 希少金属
  2. 「有機合成と生化学を組み合わせた統合的研究」スイス連邦工科大学チューリヒ校・Bode研より
  3. 低温低圧・常温常圧窒素固定の反応開発 最新情報サマリー その1
  4. ペルフルオロデカリン (perfluorodecalin)
  5. 理化学研究所が新元素発見 名前は「リケニウム」?
  6. トーンカーブをいじって画像加工を見破ろう
  7. 元素のふしぎ展に行ってきました
  8. 化学五輪、「金」の高3連続出場 7月に東京開催
  9. Happy Friday?
  10. レドックスフロー電池 Redox-Flow Battery, RFB

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

注目情報

最新記事

【書評】現場で役に立つ!臨床医薬品化学

「現場で役に立つ!臨床医薬品化学」は、2021年3月に化学同人より発行された、医…

環状ペプチドの効率的な化学-酵素ハイブリッド合成法の開発

第494回のスポットライトリサーチは、北海道大学大学院生命科学院 天然物化学研究室(脇本研究室) 博…

薬学会一般シンポジウム『異分野融合で切り込む!膜タンパク質の世界』

3月に入って2022年度も終わりが近づき、いよいよ学会年会シーズンになってきました。コロナ禍も終わり…

【ナード研究所】新卒採用情報(2024年卒)

NARDでの業務は、「研究すること」。入社から、30代・40代・50代…と、…

株式会社ナード研究所ってどんな会社?

株式会社ナード研究所(NARD)は、化学物質の受託合成、受託製造、受託研究を通じ…

マテリアルズ・インフォマティクスを実践するためのベイズ最適化入門 -デモンストレーションで解説-

開催日:2023/04/05 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

ペプチド修飾グラフェン電界効果トランジスタを用いた匂い分子の高感度センシング

第493回のスポットライトリサーチは、東京工業大学 物質理工学院 材料系 早水研究室の本間 千柊(ほ…

日本薬学会  第143年会 付設展示会ケムステキャンペーン Part 2

第一弾に引き続き第二弾。薬学会付設展示会における協賛企業とのケムステコラボキャンペーンです。…

有機合成化学協会誌2023年3月号:Cynaropicri・DPAGT1阻害薬・トリフルオロメチル基・イソキサゾール・触媒的イソシアノ化反応

有機合成化学協会が発行する有機合成化学協会誌、2023年3月号がオンライン公開されました。早…

日本薬学会  第143年会 付設展示会ケムステキャンペーン Part 1

さて、日本化学会春季年会の付設展示会ケムステキャンペーンを3回にわたり紹介しましたが、ほぼ同時期に行…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP