[スポンサーリンク]

化学者のつぶやき

先端の質量分析:GC-MSおよびLC-MSデータ処理における機械学習の応用

[スポンサーリンク]

キャラクタライゼーションの機械学習応用は、マテリアルズ・インフォマティクス(MI)およびラボオートメーション(LA)において材料やサンプルの性状を迅速かつ高精度に評価するための鍵となります。本稿では、GC‐MSおよびLC‐MSによる質量分析において、従来手法が直面していたデータ量の膨大さ、ピーク形状の変動、保持時間のシフト、ピーク重なりといった課題に対し、機械学習や深層学習を活用したデータ駆動型解析アプローチを紹介します。前処理の自動化・高速化や再現性の向上、未知成分の同定が可能となり、解析の効率化と正確性の大幅な改善が期待されます。

GC-MS/LC-MSについて

質量分析は、化合物の構造解析や定量において極めて重要なツールです。中でも、ガスクロマトグラフィー‐質量分析(GC‐MS)および液体クロマトグラフィー‐質量分析(LC‐MS)は、サンプル中の成分を分離し、高精度で検出できるため、環境分析、医薬品研究、プロテオミクス、メタボロミクスなど多岐にわたる分野で活用されています。
GC-MSは、ガスクロマトグラフィーと質量分析を組み合わせ、主に揮発性で熱的に安定な化合物の解析に優れています。
LC-MSは、液体クロマトグラフィーと質量分析の組み合わせにより、分子量が大きく、極性が高く、熱に弱い分子の解析に適しています。
近年、従来のピーク抽出や手動パラメータ調整に頼った解析方法から、機械学習や深層学習を活用したデータ駆動型解析へと進化しており、これにより以下のようなメリットが得られています。
自動化・高速化:データの前処理から解析、結果の解釈までが自動化され、膨大なデータ量にも迅速に対応可能。
再現性の向上:人為的な調整に依存しないため、解析結果の一貫性が高い。
未知成分の同定:データ全体を統計的に解析することで、既存データベースに存在しない未知の化合物も候補として提示できる。
本稿では、これらの背景を踏まえ、最新の機械学習技術とデータ駆動型解析アプローチが、GC‐MSおよびLC‐MSデータに内在する課題にどのように対応しているか解説し、応用例についてもご紹介します。

GC-MS/LC-MS における課題

GC-MSおよびLC-MSデータの解析は、その二次元的な性質に起因する独自の課題を伴います。二次元的な性質とはすなわち、「時間経過に沿ったクロマトグラフィーによる成分分離」および「各時間点で取得される質量スペクトル情報」を同時に考慮しなくてはならないことを指します。
この二次元情報の組み合わせにより、様々な解析上の課題が発生します。

  • データ量の膨大さ
  • ピーク形状の変動
  • 保持時間のシフト
  • ピークの重なり

これらの問題は、装置の個体差、汚染、使用されるカラムの種類、さらには厳密なキャリブレーションや正規化処理の必要性といった要因によってさらに複雑化します。

図1. GC-MS/LC-MS分析の課題

 

データ駆動型アプローチによる従来の解析課題の解決

上述した従来の解析課題のそれぞれについて、データ駆動型での解決アプローチを紹介します。

課題1: データ量の膨大さ

GC‐MS/LC‐MSでは、1回の測定で数百の時間点・数千の質量スペクトルが生成されます。これにより、解析対象となるデータの総量は非常に大きくなり、従来の手法ではデータ処理の計算負荷が著しく高いという問題がありました。
また、従来のピーク抽出処理では手動パラメータ調整、データの前処理に伴う情報ロスといった課題がありました。
これに対して、機械学習による自動セグメンテーション手法を活用できます。たとえば、クロマトグラムを適切なセグメントに分割し、各セグメントの情報をテンソル分解により圧縮することで、必要な情報のみを抽出できます。

課題2: ピーク形状の変動

同一成分であっても、装置や試料条件の違いによりピークの形状は大きく変動します。従来の手法では、固定の閾値や定型的なピーク抽出アルゴリズムでしか対応できず、正確な同定や定量が難しい場合が多くありました。
標準的なピーク抽出アルゴリズムでは、ピークの幅・高さ・形状の変動を十分に捉えられず、重要な情報が失われます。
畳み込みニューラルネットワーク(CNN)などの深層学習モデルを用いて元データ全体を入力とすることで、複雑なピーク形状や微妙な変動パターンを学習し、より正確なピーク検出を可能にします。微細な信号が正確に抽出されることで、後続の解析精度も向上します。

 続きはこちら

本記事はMI-6株式会社から提供された記事を引用し作成しています。 

関連記事

Avatar photo

ケムステPR

投稿者の記事一覧

ケムステのPRアカウントです。募集記事や記事体広告関連の記事を投稿します。

関連記事

  1. 2018年ケムステ人気記事ランキング
  2. 研究室でDIY!割れないマニホールドをつくろう・改
  3. 生体分子機械の集団運動の制御に成功:環境適応能や自己修復機能の発…
  4. 窒素を挿入してペリレンビスイミドを曲げる〜曲面π共役分子の新設計…
  5. 論文チェックと文献管理にお困りの方へ:私が実際に行っている方法を…
  6. サムライ化学者高峰譲吉「さくら、さくら」劇場鑑賞券プレゼント!
  7. どろどろ血液でもへっちゃら
  8. 円偏光発光を切り替える色素ー暗号通信への応用に期待ー

注目情報

ピックアップ記事

  1. 第45回「天然物合成化学の新展開を目指して」大栗博毅教授
  2. 簡単に扱えるボロン酸誘導体の開発 ~小さな構造変化が大きな違いを生んだ~
  3. 新人化学者の失敗ランキング
  4. C-H活性化触媒を用いる(+)-リゾスペルミン酸の収束的合成
  5. ウェルチ化学賞・受賞者一覧
  6. 酢酸ビニル (vinyl acetate)
  7. 【速報】2011年ノーベル化学賞は「準結晶の発見」に!
  8. トランジスタの三本足を使ってsp2骨格の分子模型をつくる
  9. 【書籍】研究者の仕事術~プロフェッショナル根性論~
  10. 第53回「すべての化学・工学データを知識に変える」金子弘昌准教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2025年3月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

四国化成ってどんな会社?

私たち四国化成ホールディングス株式会社は、企業理念「独創力」を掲げ、「有機合成技術」…

世界の技術進歩を支える四国化成の「独創力」

「独創力」を体現する四国化成の研究開発四国化成の開発部隊は、長年蓄積してきた有機…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP