[スポンサーリンク]

化学者のつぶやき

Dead Endを回避せよ!「全合成・極限からの一手」⑤(解答編)

[スポンサーリンク]

 

このコーナーでは、直面した困難を克服するべく編み出された、全合成における優れた問題解決とその発想をクイズ形式で紹介してみたいと思います。

第5回はStürmer, Hoffmannらによるエリスロノリド類縁体の全合成が題材でした(問題はこちら)。今回はその解答編になります。

A Short, Linear Synthesis of (9S)-Dihydroerythronolide A
Stürmer, R.; Ritter, K.; Hoffmann, R. W. Angew. Chem. Int. Ed. 1993, 32, 101. DOI: 10.1002/anie.199301011

解答例

今回も第3回と同じく、最後の最後で脱保護が上手くいかない!という“脱保護プロブレム”がテーマです。

合成終盤では温和な条件での脱保護が求められるため、普通は緻密な保護基の選定が行われます。しかし本合成ではほとんど同じ酸性条件で外れてしまうアセタールが2種、最後まで残るルートになっています。モデル化合物では上手く脱保護できたそうですが、少しばかり計画段階から難があったのかも知れません・・・。

ともあれ全合成直前までは行き着いたわけで、あとは脱保護プロブレムさえ解決できればクリア!というのが状況設定です。

これぐらいの大きさの化合物であれば、馬力ある人なら途中から作りなおしたり、無理やり保護基を掛け換えて強引にクリアしてしまうかも知れません。しかし彼らはそうはせず、うまくこの問題をクリアしています。

問題のスキームにもある通り、結局は塩酸水溶液という酸性条件で外しています。ここで選択的脱保護を達成するには、PMPアセタールだけ、酸加水分解に対する耐性を上げてやる必要があります。

・・・そんなことできるの?と一見して思えてしまいますが、驚くべきことになんと、トリニトロトルエンの添加がこの役割を果たすというのです!

ΩΩΩ<な、なんだってー!!!

化学畑の皆さんなら当然ご承知でしょう、これはTNTという略称で有名な爆薬そのものです。

TNT爆薬のデモ動画

こんなもの市販されてるのか???と一瞬我が目を疑いましたよ、ええ。実はこの辺で調べれば簡単に分か・・・いやゲフンゲフン、さすがに売ってても買うのも使うのもはばかられますよね、こんな試薬。

爆薬以外に用途がない試薬を入れて、反応仕込んでみるって発想からして信じがたいですが、化学的観点からすれば、これは割に合理的アイデアたりえるというのだから、また驚きです。

同じアセタールでも、PMPアセタールとシクロペンチリデンアセタールは、電子豊富芳香環を含むか含まないかという違いがあります。一方のTNTは、ニトロ基が3つもくっついている、大変に電子不足な芳香族化合物

おや、この組み合わせ、なんとなくπ-π相互作用というキーワードが透けて見えそうですよね・・・。

そのとおり、実はTNTとPMP基はπ-π相互作用を介して、電荷移動錯体を組むのです。一旦こうなると、PMP環はカチオン性を帯びるため、オキソニウムカチオン生成による開環が抑えられ、引き続く加水分解も起こらない理屈なのだそうで・・・

next_move_5a_1

シクロペンチリデンアセタール側は、もちろんこんな相互作用を起こさないため、通常どおり酸加水分解が進行します。こうして、結果的に選択的脱保護が達成されました。

困ったら、とにかく妙な試薬を手当たり次第混ぜてみるのも、案外悪くないチョイスなのかも知れませんね。そこから新たなケミストリーが見つかればモウマンタイ! ・・・まぁ、現実はそこまで甘くないんですけどね(つД`)

関連書籍

[amazonjs asin=”3527306447″ locale=”JP” title=”Dead Ends and Detours”][amazonjs asin=”3527329765″ locale=”JP” title=”More Dead Ends and Detours”]

関連リンク

Solve your deprotection problems… with TNT (B.R.S.M.)

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 薬学会年会も付設展示会キャンペーンやっちゃいます
  2. 荷電π電子系の近接積層に起因した電子・光物性の制御
  3. 材料開発における生成AIの活用方法
  4. 【速報】HGS 分子構造模型「 立体化学 学生用セット」販売再開…
  5. マテリアルズ・インフォマティクスの推進成功事例セミナー-なぜあの…
  6. 誰でも使えるイオンクロマトグラフ 「Eco IC」新発売:メトロ…
  7. ポンコツ博士の海外奮闘録⑥ 〜博士,アメ飯を食す。おうち系お肉編…
  8. 歯車クラッチを光と熱で制御する分子マシン

注目情報

ピックアップ記事

  1. すごい分子 世界は六角形でできている
  2. アルキンから環状ポリマーをつくる
  3. ビール好きならこの論文を読もう!
  4. サラ・E・リースマン Sarah E. Reisman
  5. ウィッティヒ反応 Wittig Reaction
  6. 向山アルドール反応 Mukaiyama Aldol Reaction
  7. Illustrated Guide to Home Chemistry Experiments
  8. 日本化学会がプロモーションムービーをつくった:ATP交流会で初公開
  9. センチメートルサイズで均一の有機分子薄膜をつくる!”シンプル イズ ザ ベスト”の極意
  10. ヒノキチオール (hinokitiol)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年5月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP