[スポンサーリンク]

化学者のつぶやき

Dead Endを回避せよ!「全合成・極限からの一手」⑤(解答編)

 

このコーナーでは、直面した困難を克服するべく編み出された、全合成における優れた問題解決とその発想をクイズ形式で紹介してみたいと思います。

第5回はStürmer, Hoffmannらによるエリスロノリド類縁体の全合成が題材でした(問題はこちら)。今回はその解答編になります。

A Short, Linear Synthesis of (9S)-Dihydroerythronolide A
Stürmer, R.; Ritter, K.; Hoffmann, R. W. Angew. Chem. Int. Ed. 1993, 32, 101. DOI: 10.1002/anie.199301011

解答例

今回も第3回と同じく、最後の最後で脱保護が上手くいかない!という“脱保護プロブレム”がテーマです。

合成終盤では温和な条件での脱保護が求められるため、普通は緻密な保護基の選定が行われます。しかし本合成ではほとんど同じ酸性条件で外れてしまうアセタールが2種、最後まで残るルートになっています。モデル化合物では上手く脱保護できたそうですが、少しばかり計画段階から難があったのかも知れません・・・。

ともあれ全合成直前までは行き着いたわけで、あとは脱保護プロブレムさえ解決できればクリア!というのが状況設定です。

これぐらいの大きさの化合物であれば、馬力ある人なら途中から作りなおしたり、無理やり保護基を掛け換えて強引にクリアしてしまうかも知れません。しかし彼らはそうはせず、うまくこの問題をクリアしています。

問題のスキームにもある通り、結局は塩酸水溶液という酸性条件で外しています。ここで選択的脱保護を達成するには、PMPアセタールだけ、酸加水分解に対する耐性を上げてやる必要があります。

・・・そんなことできるの?と一見して思えてしまいますが、驚くべきことになんと、トリニトロトルエンの添加がこの役割を果たすというのです!

ΩΩΩ<な、なんだってー!!!

化学畑の皆さんなら当然ご承知でしょう、これはTNTという略称で有名な爆薬そのものです。

TNT爆薬のデモ動画

こんなもの市販されてるのか???と一瞬我が目を疑いましたよ、ええ。実はこの辺で調べれば簡単に分か・・・いやゲフンゲフン、さすがに売ってても買うのも使うのもはばかられますよね、こんな試薬。

爆薬以外に用途がない試薬を入れて、反応仕込んでみるって発想からして信じがたいですが、化学的観点からすれば、これは割に合理的アイデアたりえるというのだから、また驚きです。

同じアセタールでも、PMPアセタールとシクロペンチリデンアセタールは、電子豊富芳香環を含むか含まないかという違いがあります。一方のTNTは、ニトロ基が3つもくっついている、大変に電子不足な芳香族化合物

おや、この組み合わせ、なんとなくπ-π相互作用というキーワードが透けて見えそうですよね・・・。

そのとおり、実はTNTとPMP基はπ-π相互作用を介して、電荷移動錯体を組むのです。一旦こうなると、PMP環はカチオン性を帯びるため、オキソニウムカチオン生成による開環が抑えられ、引き続く加水分解も起こらない理屈なのだそうで・・・

next_move_5a_1

シクロペンチリデンアセタール側は、もちろんこんな相互作用を起こさないため、通常どおり酸加水分解が進行します。こうして、結果的に選択的脱保護が達成されました。

困ったら、とにかく妙な試薬を手当たり次第混ぜてみるのも、案外悪くないチョイスなのかも知れませんね。そこから新たなケミストリーが見つかればモウマンタイ! ・・・まぁ、現実はそこまで甘くないんですけどね(つД`)

関連書籍

関連リンク

Solve your deprotection problems… with TNT (B.R.S.M.)

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ビニグロールの全合成
  2. 日化年会に参加しました:たまたま聞いたA講演より
  3. ベンジル位アセタールを選択的に酸素酸化する不均一系触媒
  4. 文具に凝るといふことを化学者もしてみむとてするなり⑥:実験室でも…
  5. 究極のエネルギーキャリアきたる?!
  6. 酒石酸にまつわるエトセトラ
  7. 世界の「イケメン人工分子」① ~ 分子ボロミアンリング ~
  8. 亜鉛挿入反応へのLi塩の効果

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 日宝化学、マイクロリアクターでオルソ酢酸メチル量産
  2. 若手化学者に朗報!YMC研究奨励金に応募しよう!
  3. SciFinder Future Leaders in Chemistry参加のススメ
  4. 白血病治療新薬の候補物質 京大研究グループと日本新薬が開発
  5. 2016年化学10大ニュース
  6. 日本国際賞―受賞化学者一覧
  7. シラフルオフェン (silafluofen)
  8. PACIFICHEM2010に参加してきました!Final!
  9. CTCLS、製薬業界向けに医薬品の探索研究に特化した電子実験ノートブックを販売
  10. ChemDrawの使い方【作図編①:反応スキーム】

関連商品

注目情報

注目情報

最新記事

酵素触媒によるアルケンのアンチマルコフニコフ酸化

酵素は、基質と複数点で相互作用することにより、化学反応を厳密にコントロールしています。通常のフラ…

イオンの出入りを制御するキャップ付き分子容器の開発

第124回のスポットライトリサーチは、金沢大学 理工研究域物質化学系錯体化学研究分野(錯体化学・超分…

リチウムイオン電池の課題のはなし-1

Tshozoです。以前リチウムイオン電池に関するトピックを2つほど紹介した(記事:リチウムイ…

アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化

2015年、プリンストン大学・D. W. C. MacMillanらは、水素移動触媒(HAT)および…

三種類の分子が自発的に整列した構造をもつ超分子共重合ポリマーの開発

第123回のスポットライトリサーチは、テキサス大学オースティン校博士研究員(Jonathan L. …

超分子化学と機能性材料に関する国際シンポジウム2018

「超分子化学と機能性材料に関する国際シンポジウム2018」CEMS International Sy…

Chem-Station Twitter

PAGE TOP