[スポンサーリンク]

化学者のつぶやき

Dead Endを回避せよ!「全合成・極限からの一手」⑤(解答編)

[スポンサーリンク]

 

このコーナーでは、直面した困難を克服するべく編み出された、全合成における優れた問題解決とその発想をクイズ形式で紹介してみたいと思います。

第5回はStürmer, Hoffmannらによるエリスロノリド類縁体の全合成が題材でした(問題はこちら)。今回はその解答編になります。

A Short, Linear Synthesis of (9S)-Dihydroerythronolide A
Stürmer, R.; Ritter, K.; Hoffmann, R. W. Angew. Chem. Int. Ed. 1993, 32, 101. DOI: 10.1002/anie.199301011

解答例

今回も第3回と同じく、最後の最後で脱保護が上手くいかない!という“脱保護プロブレム”がテーマです。

合成終盤では温和な条件での脱保護が求められるため、普通は緻密な保護基の選定が行われます。しかし本合成ではほとんど同じ酸性条件で外れてしまうアセタールが2種、最後まで残るルートになっています。モデル化合物では上手く脱保護できたそうですが、少しばかり計画段階から難があったのかも知れません・・・。

ともあれ全合成直前までは行き着いたわけで、あとは脱保護プロブレムさえ解決できればクリア!というのが状況設定です。

これぐらいの大きさの化合物であれば、馬力ある人なら途中から作りなおしたり、無理やり保護基を掛け換えて強引にクリアしてしまうかも知れません。しかし彼らはそうはせず、うまくこの問題をクリアしています。

問題のスキームにもある通り、結局は塩酸水溶液という酸性条件で外しています。ここで選択的脱保護を達成するには、PMPアセタールだけ、酸加水分解に対する耐性を上げてやる必要があります。

・・・そんなことできるの?と一見して思えてしまいますが、驚くべきことになんと、トリニトロトルエンの添加がこの役割を果たすというのです!

ΩΩΩ<な、なんだってー!!!

化学畑の皆さんなら当然ご承知でしょう、これはTNTという略称で有名な爆薬そのものです。

TNT爆薬のデモ動画

こんなもの市販されてるのか???と一瞬我が目を疑いましたよ、ええ。実はこの辺で調べれば簡単に分か・・・いやゲフンゲフン、さすがに売ってても買うのも使うのもはばかられますよね、こんな試薬。

爆薬以外に用途がない試薬を入れて、反応仕込んでみるって発想からして信じがたいですが、化学的観点からすれば、これは割に合理的アイデアたりえるというのだから、また驚きです。

同じアセタールでも、PMPアセタールとシクロペンチリデンアセタールは、電子豊富芳香環を含むか含まないかという違いがあります。一方のTNTは、ニトロ基が3つもくっついている、大変に電子不足な芳香族化合物

おや、この組み合わせ、なんとなくπ-π相互作用というキーワードが透けて見えそうですよね・・・。

そのとおり、実はTNTとPMP基はπ-π相互作用を介して、電荷移動錯体を組むのです。一旦こうなると、PMP環はカチオン性を帯びるため、オキソニウムカチオン生成による開環が抑えられ、引き続く加水分解も起こらない理屈なのだそうで・・・

next_move_5a_1

シクロペンチリデンアセタール側は、もちろんこんな相互作用を起こさないため、通常どおり酸加水分解が進行します。こうして、結果的に選択的脱保護が達成されました。

困ったら、とにかく妙な試薬を手当たり次第混ぜてみるのも、案外悪くないチョイスなのかも知れませんね。そこから新たなケミストリーが見つかればモウマンタイ! ・・・まぁ、現実はそこまで甘くないんですけどね(つД`)

関連書籍

関連リンク

Solve your deprotection problems… with TNT (B.R.S.M.)

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 怒涛の編集長 壁村耐三 ~論文と漫画の共通項~
  2. 学会風景2001
  3. 触媒量の金属錯体でリビング開環メタセシス重合を操る
  4. Skype英会話の勧め
  5. 低分子医薬に代わり抗体医薬がトップに?
  6. 光反応性ジアジリンアミノ酸:Fmoc-Tdf-OH, H-Tdf…
  7. Dead Endを回避せよ!「全合成・極限からの一手」④(解答編…
  8. 添加剤でスイッチするアニリンの位置選択的C-Hアルキル化

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ホットキーでクールにChemDrawを使いこなそう!
  2. 有機ホウ素化合物を用いたSNi型立体特異的β-ラムノシル化反応の開発
  3. すぐできる 量子化学計算ビギナーズマニュアル
  4. ハンスディーカー反応 Hunsdiecker Reaction
  5. 資生堂:育毛成分アデノシン配合の発毛促進剤
  6. ノーベル賞化学者に会いに行こう!「リンダウ・ノーベル賞受賞者会議」応募開始
  7. 原子間力顕微鏡 Atomic Force Microscope (AFM)
  8. ふにふにふわふわ☆マシュマロゲルがスゴい!?
  9. アブシジン酸(abscisic acid; ABA)
  10. 博士課程学生の経済事情

関連商品

注目情報

注目情報

最新記事

研究室でDIY!~エバポ用真空制御装置をつくろう~ ③

さて、前回に引き続いて、「エバポ用真空制御装置の自作」に挑戦しています。前回までの記事では、…

AIによる創薬に新たな可能性 その研究と最新技術に迫る ~米・Insitro社 / 英・ケンブリッジ大学の研究から~

AIの機械学習による創薬が化学業界で注目を集めています。2019年3月に米国サンフランシスコで開催さ…

特長のある豊富な設備:ライトケミカル工業

1. 高粘度撹拌、高温・高圧・高真空に対応可能な反応釜高粘度でも撹拌できる大容量攪拌機と効率用除…

ライトケミカル工業2021年採用情報

当社の技術グループは、20代~30代の若手社員が重要な主要案件を担当しています。広範囲で高レベルな化…

中高生・高専生でも研究が学べる!サイエンスメンタープログラム

研究室に入って本格的な研究を始めるのは、大学4年生からが一般的。でも最近は、中高生が研究に取り組める…

ジャーナル編集ポリシーデータベース「Transpose」

およそ3000誌のジャーナル編集ポリシーをまとめたデータベース「Transpose」が、この6月に公…

Chem-Station Twitter

PAGE TOP