[スポンサーリンク]

化学者のつぶやき

Dead Endを回避せよ!「全合成・極限からの一手」⑤(解答編)

[スポンサーリンク]

 

このコーナーでは、直面した困難を克服するべく編み出された、全合成における優れた問題解決とその発想をクイズ形式で紹介してみたいと思います。

第5回はStürmer, Hoffmannらによるエリスロノリド類縁体の全合成が題材でした(問題はこちら)。今回はその解答編になります。

A Short, Linear Synthesis of (9S)-Dihydroerythronolide A
Stürmer, R.; Ritter, K.; Hoffmann, R. W. Angew. Chem. Int. Ed. 1993, 32, 101. DOI: 10.1002/anie.199301011

解答例

今回も第3回と同じく、最後の最後で脱保護が上手くいかない!という“脱保護プロブレム”がテーマです。

合成終盤では温和な条件での脱保護が求められるため、普通は緻密な保護基の選定が行われます。しかし本合成ではほとんど同じ酸性条件で外れてしまうアセタールが2種、最後まで残るルートになっています。モデル化合物では上手く脱保護できたそうですが、少しばかり計画段階から難があったのかも知れません・・・。

ともあれ全合成直前までは行き着いたわけで、あとは脱保護プロブレムさえ解決できればクリア!というのが状況設定です。

これぐらいの大きさの化合物であれば、馬力ある人なら途中から作りなおしたり、無理やり保護基を掛け換えて強引にクリアしてしまうかも知れません。しかし彼らはそうはせず、うまくこの問題をクリアしています。

問題のスキームにもある通り、結局は塩酸水溶液という酸性条件で外しています。ここで選択的脱保護を達成するには、PMPアセタールだけ、酸加水分解に対する耐性を上げてやる必要があります。

・・・そんなことできるの?と一見して思えてしまいますが、驚くべきことになんと、トリニトロトルエンの添加がこの役割を果たすというのです!

ΩΩΩ<な、なんだってー!!!

化学畑の皆さんなら当然ご承知でしょう、これはTNTという略称で有名な爆薬そのものです。

TNT爆薬のデモ動画

こんなもの市販されてるのか???と一瞬我が目を疑いましたよ、ええ。実はこの辺で調べれば簡単に分か・・・いやゲフンゲフン、さすがに売ってても買うのも使うのもはばかられますよね、こんな試薬。

爆薬以外に用途がない試薬を入れて、反応仕込んでみるって発想からして信じがたいですが、化学的観点からすれば、これは割に合理的アイデアたりえるというのだから、また驚きです。

同じアセタールでも、PMPアセタールとシクロペンチリデンアセタールは、電子豊富芳香環を含むか含まないかという違いがあります。一方のTNTは、ニトロ基が3つもくっついている、大変に電子不足な芳香族化合物

おや、この組み合わせ、なんとなくπ-π相互作用というキーワードが透けて見えそうですよね・・・。

そのとおり、実はTNTとPMP基はπ-π相互作用を介して、電荷移動錯体を組むのです。一旦こうなると、PMP環はカチオン性を帯びるため、オキソニウムカチオン生成による開環が抑えられ、引き続く加水分解も起こらない理屈なのだそうで・・・

next_move_5a_1

シクロペンチリデンアセタール側は、もちろんこんな相互作用を起こさないため、通常どおり酸加水分解が進行します。こうして、結果的に選択的脱保護が達成されました。

困ったら、とにかく妙な試薬を手当たり次第混ぜてみるのも、案外悪くないチョイスなのかも知れませんね。そこから新たなケミストリーが見つかればモウマンタイ! ・・・まぁ、現実はそこまで甘くないんですけどね(つД`)

関連書籍

関連リンク

Solve your deprotection problems… with TNT (B.R.S.M.)

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 半導体ナノ結晶に配位した芳香族系有機化合物が可視光線で可逆的に脱…
  2. マテリアルズ・インフォマティクスの基礎知識とよくある誤解
  3. 高圧ガス甲種化学 受験体験記① ~概要・申し込み~
  4. CAS Future Leaders Program 2023 …
  5. 第10回次世代を担う有機化学シンポジウムに参加してきました
  6. ポンコツ博士の海外奮闘録⑨ 〜博士,Yosemiteに行く〜
  7. 静電相互作用を駆動力とする典型元素触媒
  8. 書物から学ぶ有機化学4

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 抗生物質の話
  2. 化学と株価
  3. デニス・ホール Dennis G. Hall
  4. ChemDrawの使い方【作図編②:触媒サイクル】
  5. MOF-5: MOF の火付け役であり MOF の代名詞
  6. クラブトリー触媒 Crabtree’s Catalyst
  7. 化学系プレプリントサーバー「ChemRxiv」のβ版が運用開始
  8. 有機合成化学協会誌2021年6月号:SGLT2阻害薬・シクロペンチルメチルエーテル・4-メチルテトラヒドロピラン・糖-1-リン酸・新規ホスホジエステラーゼ阻害薬
  9. ヘリウム新供給プロジェクト、米エアプロダクツ&ケミカルズ社
  10. 第46回―「分子レベルの情報操作を目指す」Howard Colquhoun教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年5月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

マテリアルズ・インフォマティクスと持続可能性: 環境課題の解決策

開催日:2024/05/29 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

Christoper Uyeda教授の講演を聴講してみた

bergです。この度は2024年5月13日(月)に東京大学 本郷キャンパス(薬学部)にて開催された「…

有機合成化学協会誌2024年5月号:「分子設計・編集・合成科学のイノベーション」特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年5月号がオンライン公開されています。…

電子のスピンに基づく新しい「異性体」を提唱―スピン状態を色で見分けられる分子を創製―

第614回のスポットライトリサーチは、京都大学大学院工学研究科(松田研究室)の清水大貴 助教にお願い…

Wei-Yu Lin教授の講演を聴講してみた

bergです。この度は2024年5月13日(月)に東京大学 本郷キャンパス(薬学部)にて開催されたW…

【26卒】太陽HD研究開発 1day仕事体験

太陽HDでの研究開発職を体感してみませんか?私たちの研究活動についてより近くで体験していただく場…

カルベン転移反応 ~フラスコ内での反応を生体内へ~

有機化学を履修したことのある方は、ほとんど全員と言っても過言でもないほどカルベンについて教科書で習っ…

ナノ学会 第22回大会 付設展示会ケムステキャンペーン

ナノ学会の第22回大会が東北大学青葉山新キャンパスにて開催されます。協賛団体であるACS(ア…

【酵素模倣】酸素ガスを用いた MOF 内での高スピン鉄(IV)オキソの発生

Long らは酸素分子を酸化剤に用いて酵素を模倣した反応活性種を金属-有機構造体中に発生させ、C-H…

【書評】奇跡の薬 16 の物語 ペニシリンからリアップ、バイアグラ、新型コロナワクチンまで

ペニシリンはたまたま混入したアオカビから発見された──だけではない.薬の…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP