[スポンサーリンク]

一般的な話題

50年来の謎反応を解明せよ

[スポンサーリンク]

タイトル画像は50年前の論文に記載されている反応ですが、反応機構を提案できますか?
有機化学を専門にされている方でもぱっと見ではわからないと思います。そもそも1炭素増えてるのっておかしくないですか?

この反応は1973年に、ComerとTempleによってJ. Org. Chem.誌に発表された論文に掲載されています。

“The reaction of cyclopentanones with methylsulfinyl carbanion”

Comer, W. T.; Temple, D. L.

J. Org. Chem. 1973, 38, 2121. DOI: 10.1021/jo00952a002

ジメチルスルホキシド(DMSO)に強塩基である水素化ナトリウム(NaH)を作用させて生じるアニオンは、カルボニル基のα-位のプロトンの引き抜きによりエノラートアニオンを発生させるのに用いられることがあります。シクロペンタノンを用いていますので、その対応するエノラートアニオンがもう一分子のシクロペンタノンに付加する反応(アルドール反応)が起こるのは十分にありえる反応です。これはエノラートの化学で度々問題になる副反応として知られています。さらにアルドール反応によって生じたヒドロキシ基が脱離すれば不飽和ケトンになるというのもアルドール反応あるあるな副反応です。これらを基にしてComerらは上記の反応について考察し、以下のような反応機構を提案していました。
重水素化したDMSO(重DMSO)を溶媒として用いることにより、DMSOの1炭素が生成物に追加された1炭素と結論づけたことになります。

んーでもケトンに対してDMSOのアニオンが求核付加反応するってのはどうなんだろうか?と筆者も不思議に思ったかもしれません。同じことを考えたのかはわかりませんが、R. B. Woodward教授のもとで当時博士の学位を取得すべく研究をしていた、現ハーバード大学教授のStuart L. Schreiber教授もこの反応について議論していたそうです。1974年には自身の手でこの実験を再現し、生成物の構造が正しいことはWoodward教授の分析によっても確認されました。しかし、自身のプロジェクトが忙しかったために、時は過ぎ、いつしか忘れ去られていました。しかし、最近になって大学院生時代の思い出ばなしの中で、この反応が出され、同僚であるAndrew G. Myers教授らは真の反応機構について明らかにしたいと思い立ちました。

“Proposed resolution of a mechanistic puzzle of long duration: Self-condensation of cyclopentanone to form an 11-carbon dienoic acid”

Peszko, M. T.; Schreiber, S. L.; Myers, A. G.

J. Org. Chem., in press DOI: 10.1021/acs.joc.3c00492

まず、Comerらの実験を再現すべく重水素化したDMSO中での反応を試みましたが、結果が再現されず鍵となるメチレン基の11位には重水素がほとんど導入されませんでした。では、この炭素はどこから来たのでしょうか?


そのヒントは実験操作にありました。もとの論文では最初の発熱を伴う反応の終了後に、ジエチルエーテルとジクロロメタン(1:1)の溶媒に注ぎ、冷蔵庫で一晩放置するという操作があります。そこでMeyersらは反応終了後に重水素化したジクロロメタン(重ジクロロメタン)に注ぎ生成物を調べたところ、問題となる11位のメチレン基はほぼ完全に重水素化されていることを発見しました。従って、考えられる反応機構としては(eq 3)に示したように、まずシクロペンタノンの二量体が塩基の作用でジエノラートアニオン(3)となっており、これがジクロロメタンと反応することでクロロメチル化された4ができます。ここから付加、脱離を伴う炭素ー炭素結合の開裂が起こることで化合物1となるわけです。

実際別途化合物4を合成して塩基で処理すると収率よく化合物1が生成することも確認していますので、間違いないと言っていいと思います。50年前に胸につっかえていたものがスカッと爽やかに取れたのはさぞかし気持ちよかったことでしょう。あなたの心には何が残っていますか?

関連書籍

ペリプラノン

投稿者の記事一覧

有機合成化学が専門。主に天然物化学、ケミカルバイオロジーについて書いていきたいと思います。

関連記事

  1. 日本化学会と対談してきました
  2. 【いまさら聞けない?】アジドの取扱いを学んでおこう!
  3. 有機化学を俯瞰する –古代ギリシャ哲学から分子説の誕生まで–【前…
  4. 環サイズを選択できるジアミノ化
  5. 有機反応を俯瞰する ーMannich 型縮合反応
  6. 表面酸化した銅ナノ粒子による低温焼結に成功~銀が主流のプリンテッ…
  7. 水中で光を当てると水素が湧き出るフィルム
  8. 含ケイ素四員環-その2-

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 高い専門性が求められるケミカル業界の専門職でステップアップ。 転職で威力を発揮する「ビジョンマッチング」とは
  2. 粉いらずの指紋検出技術、米研究所が開発
  3. 重水素 (Deuterium)
  4. 立体特異的アジリジン化:人名反応エポキシ化の窒素バージョン
  5. 分析化学の約50年来の難問を解決、実用的な微量分析法を実現
  6. 潤滑剤なしで抜群の滑りを実現する「自己潤滑性XXドーム」が開発されている
  7. Spin-component-scaled second-order Møller–Plesset perturbation theory (SCS-MP2)
  8. Actinophyllic Acidの全合成
  9. ハリー・グレイ Harry B. Gray
  10. スタニルリチウム調製の新手法

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年6月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

超高圧合成、添加剤が選択的物質合成の決め手に -電池材料等への応用に期待-

第565回のスポットライトリサーチは、東京工業大学 科学技術創成研究院 フロンティア材料研究所 東・…

「ハーバー・ボッシュ法を超えるアンモニア合成法への挑戦」を聴講してみた

bergです。この度は2023年9月8日(金)に慶応義塾大学 矢上キャンパスにて開催された西林教授の…

(+)-Pleiocarpamineの全合成と新規酸化的カップリング反応を基盤とした(+)-voacalgine Aおよび(+)-bipleiophyllineの全合成

第564回のスポットライトリサーチは、東北大学大学院薬学研究科分子薬科学専攻・医薬製造化学分野(徳山…

ResearchGateに対するACSとElsevierによる訴訟で和解が成立

2023年9月15日、米国化学会(ACS)とElsevier社がResearchGateに対して起こ…

マテリアルズ・インフォマティクスの基礎知識とよくある誤解

開催日:2023/10/04 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

理研、放射性同位体アスタチンの大量製造法を開発

理化学研究所 仁科加速器科学研究センター 核化学研究開発室、金属技研株式会社 技術開発本部 エン…

マイクロ波プロセスを知る・話す・考える ー新たな展望と可能性を探るパネルディスカッションー

<内容>参加いただくみなさまとご一緒にマイクロ波プロセスの新たな展望と可能性について探る、パ…

SFTSのはなし ~マダニとその最新情報 後編~

注意1:この記事は人によってはやや苦手と思われる画像を載せております ご注意ください注意2:厚生…

様々な化学分野におけるAIの活用

ENEOS株式会社と株式会社Preferred Networks(PFN)は、2023年1月に石油精…

第8回 学生のためのセミナー(企業の若手研究者との交流会)

有機合成化学協会が学生会員の皆さんに贈る,交流の場有機化学を武器に活躍する,本当の若手研究者を知ろう…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP