[スポンサーリンク]

一般的な話題

50年来の謎反応を解明せよ

[スポンサーリンク]

タイトル画像は50年前の論文に記載されている反応ですが、反応機構を提案できますか?
有機化学を専門にされている方でもぱっと見ではわからないと思います。そもそも1炭素増えてるのっておかしくないですか?

この反応は1973年に、ComerとTempleによってJ. Org. Chem.誌に発表された論文に掲載されています。

“The reaction of cyclopentanones with methylsulfinyl carbanion”

Comer, W. T.; Temple, D. L.

J. Org. Chem. 1973, 38, 2121. DOI: 10.1021/jo00952a002

ジメチルスルホキシド(DMSO)に強塩基である水素化ナトリウム(NaH)を作用させて生じるアニオンは、カルボニル基のα-位のプロトンの引き抜きによりエノラートアニオンを発生させるのに用いられることがあります。シクロペンタノンを用いていますので、その対応するエノラートアニオンがもう一分子のシクロペンタノンに付加する反応(アルドール反応)が起こるのは十分にありえる反応です。これはエノラートの化学で度々問題になる副反応として知られています。さらにアルドール反応によって生じたヒドロキシ基が脱離すれば不飽和ケトンになるというのもアルドール反応あるあるな副反応です。これらを基にしてComerらは上記の反応について考察し、以下のような反応機構を提案していました。
重水素化したDMSO(重DMSO)を溶媒として用いることにより、DMSOの1炭素が生成物に追加された1炭素と結論づけたことになります。

んーでもケトンに対してDMSOのアニオンが求核付加反応するってのはどうなんだろうか?と筆者も不思議に思ったかもしれません。同じことを考えたのかはわかりませんが、R. B. Woodward教授のもとで当時博士の学位を取得すべく研究をしていた、現ハーバード大学教授のStuart L. Schreiber教授もこの反応について議論していたそうです。1974年には自身の手でこの実験を再現し、生成物の構造が正しいことはWoodward教授の分析によっても確認されました。しかし、自身のプロジェクトが忙しかったために、時は過ぎ、いつしか忘れ去られていました。しかし、最近になって大学院生時代の思い出ばなしの中で、この反応が出され、同僚であるAndrew G. Myers教授らは真の反応機構について明らかにしたいと思い立ちました。

“Proposed resolution of a mechanistic puzzle of long duration: Self-condensation of cyclopentanone to form an 11-carbon dienoic acid”

Peszko, M. T.; Schreiber, S. L.; Myers, A. G.

J. Org. Chem., in press DOI: 10.1021/acs.joc.3c00492

まず、Comerらの実験を再現すべく重水素化したDMSO中での反応を試みましたが、結果が再現されず鍵となるメチレン基の11位には重水素がほとんど導入されませんでした。では、この炭素はどこから来たのでしょうか?


そのヒントは実験操作にありました。もとの論文では最初の発熱を伴う反応の終了後に、ジエチルエーテルとジクロロメタン(1:1)の溶媒に注ぎ、冷蔵庫で一晩放置するという操作があります。そこでMeyersらは反応終了後に重水素化したジクロロメタン(重ジクロロメタン)に注ぎ生成物を調べたところ、問題となる11位のメチレン基はほぼ完全に重水素化されていることを発見しました。従って、考えられる反応機構としては(eq 3)に示したように、まずシクロペンタノンの二量体が塩基の作用でジエノラートアニオン(3)となっており、これがジクロロメタンと反応することでクロロメチル化された4ができます。ここから付加、脱離を伴う炭素ー炭素結合の開裂が起こることで化合物1となるわけです。

実際別途化合物4を合成して塩基で処理すると収率よく化合物1が生成することも確認していますので、間違いないと言っていいと思います。50年前に胸につっかえていたものがスカッと爽やかに取れたのはさぞかし気持ちよかったことでしょう。あなたの心には何が残っていますか?

関連書籍

[amazonjs asin=”4621307827″ locale=”JP” title=”有機反応機構の書き方 第2版: 基礎から有機金属反応まで”] [amazonjs asin=”4759810455″ locale=”JP” title=”演習で学ぶ有機反応機構―大学院入試から最先端まで”] [amazonjs asin=”4621301071″ locale=”JP” title=”『有機反応機構』ワークブック 巻矢印で有機反応を学ぶ!”]
Avatar photo

ペリプラノン

投稿者の記事一覧

有機合成化学が専門。主に天然物化学、ケミカルバイオロジーについて書いていきたいと思います。

関連記事

  1. どろどろ血液でもへっちゃら
  2. マテリアルズ・インフォマティクスにおける回帰手法の基礎
  3. 金属錯体化学を使って神経伝達物質受容体を選択的に活性化する
  4. 近傍PCET戦略でアルコキシラジカルを生成する
  5. ADC薬基礎編: 着想の歴史的背景と小分子薬・抗体薬との比較
  6. 第94回日本化学会付設展示会ケムステキャンペーン!Part I
  7. 韮山反射炉に行ってみた
  8. ルイス塩基触媒によるボロン酸の活性化:可視光レドックス触媒系への…

注目情報

ピックアップ記事

  1. ケムステしごと企業まとめ
  2. とにかく見やすい!論文チェックアプリの新定番『Researcher』
  3. 房総半島沖350キロに希少金属 広範囲に
  4. ライトケミカル工業2025卒採用情報
  5. チャオ=ジュン・リー Chao-Jun Li
  6. ペリプラノン
  7. 生きた細胞内でケイ素と炭素がはじめて結合!
  8. 改正 研究開発力強化法
  9. クラレが防湿フィルム開発の米ベンチャー企業と戦略的パートナーシップ
  10. ハメット則

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年6月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP