[スポンサーリンク]

化学者のつぶやき

熱がダメなら光当てれば?Lugdunomycinの全合成

[スポンサーリンク]

光化学を駆使した、天然物Lugdunomycinの全合成が報告された。紫外光照射による異性化でイソベンゾフランが生成し、鍵となるDiels–Alder反応が室温付近で進行した。

紫外光を利用したLugdunomycinの全合成

Lugdunomycin (1)は、2019年にライデン大学のvan Wezelらによって単離されたアンギュサイクリン系抗生物質である[1,2]1の構造的特徴として、スピロ中心の第四級炭素を含む4つの連続した不斉炭素をもつ特徴的な6-6-5-6-6-5-5縮環骨格が挙げられる。1は、iso-maleimycin (5)とElmonin (4)から生じるイソベンゾフラン6とのDiels–Alder反応によりC環の構築を伴いながら特徴的な7環性骨格が形成されることで生合成されると推定されている。この仮説検証のために、van Wezelらはフローニンゲン大学のMinnaardらと共同で、合成化学的アプローチにより1の生合成経路の検証に取り組んだ (図1B)[3]。すなわち、推定前駆体4をxylene中で加熱すると6への異性化が進行し、これが5とのDiels–Alder反応を起こすことで1が得られると期待された。しかしながら、実際には1ではなく、そのC9位の立体異性体である9-epi-Lugdunomycin (9-epi-1)が主に得られた。この結果は、56に対して立体障害の少ないback face側から接近したためだと考えられる。以上の結果より、加熱条件下でのイソベンゾフラン形成を経る手法では、1の合成が困難であると示唆された。

今回、南華大学のHuangらは室温付近における紫外光照射を活用したイソベンゾフラン6の生成法を見いだし、1を優先的に与えるDiels–Alder反応を報告した(図1C)。具体的には、著者らは、Ⅰ) 1がラセミ体として単離された点、およびⅡ) actinaphthoran A, B (2, 3)が1と共に単離された点に着目し、1は酵素を介さない光を駆動力とした3の環化異性化反応によりイソベンゾフラン6が生成することで生合成されていると仮定した。すなわち、3へ紫外光を照射するとカルボニル基のn–p*遷移を経たスピロケタール化反応が進行し、4が生成される。再度の紫外光照射により、C–O結合の均等開裂と項間交差により双性イオン中間体が生成し、続く1,7-水素移動により6が生成すると考えた。

図1. (A) Lugdunomycin (B) 熱的条件下でのDiels–Alder反応 (C) 光照射によるイソベンゾフランの発生

 

 

“Total Synthesis of Lugdunomycin via Sequential Photoinduced Spiroketalization and Isobenzofuran Diels–Alder Reactions”

Zhu, L.; Huang, J. Angew. Chem., Int. Ed. 2025, e202422615

DOI: 10.1002/anie.202422615

論文著者の紹介

研究者:Jun Huang

研究者の経歴:

2015                         Ph.D., Peking University, China (Prof. Zhen Yang)

2015–2016            Postdoc, State University of New York at Albany, USA (Assistant Prof. Zhang Wang)

2016–                     Professor, University of South China, China

研究内容:複雑な天然物の全合成

論文の概要

1の合成経路を図2Aに示した。著者らは、クロトン酸エチル (7)とグリニャール試薬8から出発し、11工程で3を合成した。3に紫外光を照射することで、カルボニル基のn–p*遷移を起点とするスピロケタール化が進行し、4を得た[4]。さらに4に再度紫外光を照射するとイソベンゾフラン6が生じ、5とのDiels–Alder反応により、単一のジアステレオマーとして9が生成した。最後にシリカゲル処理を施すと10を経由したスピロ環構築が進行し、1が優先して得られた (1:9-epi-1 = 2:1)。

著者らは光駆動イソベンゾフラン生成機構についてDFT計算を行なった (図2B)。まず14に紫外光を当てると三重項励起状態34を経て、C–O結合の開裂が起こる。開裂する結合の位置によりTS1TS2の二通りの経路が考えられるが、エネルギー的により安定なTS1を経由し、Int1を与えると示唆された。その後の1,7-水素移動については、極性機構 (TS3)とラジカル機構 (TS4)を比較した結果、TS3の方が低エネルギーであり、Int1は項間交差を経て双性イオンInt3となり、極性機構で1,7-水素移動が起こると推定された。

また、Diels–Alder反応の遷移状態についてDFT計算を行った結果、望む1と同様の立体化学を与えるexo-cis型が最も低エネルギーであることが明らかになった (図2C)。計算によって得られた遷移状態モデル間のエネルギー差は、56の間の水素結合の直線性が失われることによる遷移状態の歪みや、5のヒドロキシ基と6のフェニル基との間の立体反発により生じていると考えられた。

図2. (A) 1の合成 (B) 光駆動イソベンゾフラン形成における自由エネルギーの計算値 (C) Diels–Alder反応の遷移状態エネルギー (kcal/mol)

 

以上、著者らは光励起を利用したイソベンゾフランの生成を鍵とするLugdunomycinの全合成を報告した。光を活用することで加熱を回避し、Diels–Alder反応の立体化学を制御した本戦略は、注目に値する革新的アプローチである。

参考文献

  1. Vysloužilová, D.; Kováč, O. The Chemistry of Angucyclines. ChemPlusChem 2024, 89, e202400307. DOI: 10.1002/cplu.202400307
  2. Wu, C.; Heul, H. U. van der; Melnik, A. V.; Lübben, J.; Dorrestein, P. C.; Minnaard, A. J.; Choi, Y. H.; van Wezel, G. P. Lugdunomycin, an Angucycline-Derived Molecule with Unprecedented Chemical Architecture. Angew. Chem., Int. Ed. 2019, 58, 2809–2814. DOI: 10.1002/anie.201814581
  3. Uiterweerd, M. T.; Santiago, I. N.; Cunha, A. V.; Havenith, R. W. A.; Du, C.; Zhang, L.; Heul, H. U. van der; Elsayed, S. S.; Minnaard, A. J.; van Wezel, G. P. Biomimetic Total Synthesis and Paired Omics Identify an Intermolecular Diels–Alder Reaction as the Key Step in Lugdunomycin Biosynthesis. J. Am. Chem. Soc. 2025, 147, 13764–13774. DOI: 10.1021/jacs.5c01883 ※なお、本論文において著者らは対応するChemrxivを参照している (DOI: 10.26434/chemrxiv-2024-d4qs8)
  4. Wakita, F.; Ando, Y.; Ohmori, K.; Suzuki, K. Model Reactions for the Enantioselective Synthesis of γ‑Rubromycin: Stereospecific Intramolecular Photoredox Cyclization of an Ortho-Quinone Ether to a Spiroacetal. Org. Lett. 2018, 20, 3928–3932. DOI: 10.1021/acs.orglett.8b01475
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 日本化学会 第103春季年会 付設展示会ケムステキャンペーン P…
  2. 直接クプラート化によるフルオロアルキル銅錯体の形成と応用
  3. オープンアクセス論文が半数突破か
  4. Post-Itのはなし ~吸盤ではない 2~
  5. ノーベル賞いろいろ
  6. 共役はなぜ起こる?
  7. MEDCHEM NEWS 33-4 号「創薬人育成事業の活動報告…
  8. Excelでできる材料開発のためのデータ解析[超入門]-統計の基…

注目情報

ピックアップ記事

  1. Pythonで学ぶ実験計画法入門 ベイズ最適化によるデータ解析
  2. フラクタルな物質、見つかる
  3. 配位子を着せ替え!?クロースカップリング反応
  4. キャリー・マリス Kary Banks Mullis
  5. グラクソ、糖尿病治療薬「ロシグリタゾン」が単独療法無効のリスクを軽減と発表
  6. 染色体分裂で活躍するタンパク質“コンデンシン”の正体は分子モーターだった!
  7. ウェブサイトのリニューアル
  8. 第135回―「量子電気力学から光と分子の相互作用を理解する」David Andrews教授
  9. 第24回「アルキル-πエンジニアリングによる分子材料創成」中西尚志 博士
  10. 炊きたてご飯の香り成分測定成功、米化学誌に発表 福井大学と福井県農業試験場

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2025年6月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

ダイヤモンド半導体について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、究極の…

有機合成化学協会誌2025年6月号:カルボラン触媒・水中有機反応・芳香族カルボン酸の位置選択的変換・C(sp2)-H官能基化・カルビン錯体

有機合成化学協会が発行する有機合成化学協会誌、2025年6月号がオンラインで公開されています。…

【日産化学 27卒】 【7/10(木)開催】START your ChemiSTORY あなたの化学をさがす 研究職限定 Chem-Talks オンライン大座談会

現役研究者18名・内定者(26卒)9名が参加!日産化学について・就職活動の進め方・研究職のキャリアに…

データ駆動型生成AIの限界に迫る!生成AIで信頼性の高い分子設計へ

第663回のスポットライトリサーチは、横浜市立大学大学院 生命医科学研究科(生命情報科学研究室)博士…

MDSのはなし 骨髄異形成症候群とそのお薬の開発状況 その2

Tshozoです。前回はMDSについての簡易な情報と歴史と原因を述べるだけで終わってしまったので…

水-有機溶媒の二液相間電子伝達により進行する人工光合成反応

第662回のスポットライトリサーチは、京都大学 大学院工学研究科 物質エネルギー化学専攻 阿部竜研究…

ケムステイブニングミキサー 2025 報告

3月26日から29日の日本化学会第105春季年会に参加されたみなさま、おつかれさまでした!運営に…

【テーマ別ショートウェビナー】今こそ変革の時!マイクロ波が拓く脱炭素時代のプロセス革新

■ウェビナー概要プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波…

予期せぬパラジウム移動を経る環化反応でベンゾヘテロールを作る

1,2-Pd移動を含む予期せぬ連続反応として進行することがわかり、高収率で生成物が得られた。 合…

【27卒】太陽HD研究開発 1day仕事体験

太陽HDでの研究開発職を体感してみませんか?私たちの研究活動についてより近くで体験していただく場…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP