[スポンサーリンク]

化学者のつぶやき

効率的に新薬を生み出すLate-Stage誘導体化反応の開発

今回紹介する論文は、Late-Stage-Functionalizationの手法を開発し、新規薬剤となる可能性のある化合物を見つけたというお話です。

Late-Stage-Functionalization(LSF:合成終盤での官能基変換)は、薬の探索合成において非常に重要な手法とされています。その利点は、活性のある薬剤の母核を保ちながら化合物特性が変わる構造修飾が行え、医薬品としてヒットしやすいものを加工でき、生産性が高いという点です。

この論文中で、筆者らはSuFEx(Sulfur(VI)-Fluoride Exchange)クリック反応のLSF手法を開発し、既存薬剤のSO2F化を行うことで、新たな薬剤の種を見出すことに成功しました。

また、合成後に引き続いて生物学的化合物評価にかけられるようにしている点でも工夫が見られます。

背景

クリック反応とは、自然界の強固なヘテロ原子結合構築ストラテジーを起源とした反応であり、簡単かつ安定な反応を用い、新たな機能性分子を創り出す手法のことです。アルキンとアジドによるトリアゾール生成反応が非常に有名でありますが、フェノール性水酸基とsulfuryl fluorideによるarylfluorosulfates(Ar-O-SO2-F)生成反応やアミンとthionyl tetrafluoride(SOF4)によるiminosulfur oxydifluorides(R-N=SOF2)生成反応等のSuFEx反応もクリック反応として近年注目を集めています。[1,2]

SuFEx反応で生成するS(Ⅳ)-F結合は生体分子との反応性が高いと考えられていた為、これまではS(Ⅳ)-F結合を有する化合物に関しての創薬化学的特性は調べられていませんでした。

しかし、近年の研究で、S(Ⅳ)-F結合と反応する生体分子はtyrosineのようなタンパク質で[3,4]、それほど種類は多くないことが分かりました。これにより、既存薬剤と比べて独特な物性を持つS(Ⅳ)-F結合含有化合物が、創薬において非常に価値ある化合物となる可能性が出てきました。

そこで筆者らは、合成後にすぐに生物学的化合物評価をしやすいように、96-well plate中でのLSFのSuFEx反応開発に取り組み、FDAに承認されている薬剤の中でフェノール性水酸基を有する化合物(120種)に対して利用しようと考えました。

(論文より引用)

結果(合成)

既存のSuFEx反応ではSO2F2ガスを用いる条件であり、高濃度では反応が進行するが低濃度では反応が進行しないという課題がありました。

候補化合物が決まり、化合物をスケールアップ合成する段階であれば良いですが、化合物が決まっていない探索合成段階では、貴重な薬を変換し評価するということを考えると濃度は低い方が望ましいです。ここで筆者らは、SO2F2を飽和させた有機溶媒を反応に用いることで、低濃度でのSuFExクリック反応を進行させることに成功しました。

Ezetimibeという薬を用いて反応条件の検討を行った結果、DIPEAまたはTEA存在下、MeCN中で高収率で反応が進行することが分かりました。この反応最適化条件では、既存のgas-liquidの反応に比べ遥かに高い収率で目的物を取得することが出来たそうです。

続いてBioassayにかける為の検討を行いました。低沸点の溶媒やTEAは減圧乾燥にて除去できますが、その場合はFイオンが残ってしまうことが課題でした。そこで、Fイオンの残存を避けるためにTMSOHを加え、反応条件下でTMSFと減圧乾燥で除去することで、Fイオンの残存を無くすことに成功しました(TMSFの沸点は16℃、1atm)。

この反応条件を元にして、FDAに承認されている、抗がん作用を示す種々の原薬に対しLSF SuFEx反応を行ったところ、39個の新規化合物を取得することに成功しました。

結果(化合物評価)

この論文では続く薬剤評価も行っていました。初めに、A549細胞とMCF-7細胞を用い阻害率を測定することで細胞毒性の評価を行いました。20μMと500μMの両方で50%以上の阻害活性を示し、変換前の親化合物より10%阻害率が増えているものをhit化合物としたところ、1F11F25Fがhit化合物となりました。親化合物の1はABT-751、11はFulvestrant、25はCombretastatin A4という薬剤でした。薬効評価を行った結果、用いる細胞によって効果の差はあるものの、これら3つの化合物は親化合物よりも高い活性を示していたそうです。

(論文より引用)

 

さらに、3つの化合物の内、11F25Fの二つはより詳細に化合物評価を行っていました。主な結果は以下の通りです

[11F]

  1. 11FはER+ MCF-7細胞で効果があるがER MCF-7細胞で効果がない
  2. ERが11Fのターゲットである
  3. ERα発現レベルを親化合物よりも下げることが出来た

これらの結果より、新規化合物11Fは、唯一のER+ breast cancer向けの薬である親化合物11を超える化合物になり得ると考えられます。

[25F]

  1. 25F25と違いHT-29細胞中でmicro tubulin networkの生成を抑制出来る(薬効がある)
  2. 25はグルクロン酸抱合によって代謝が促進され効果を示さないが、変換した25Fはフェノール性水酸基がなく代謝が遅くなっている

これらの結果からも、新規化合物25Fは、25を超える薬になる可能性を秘めていると考えられます。

所感

簡単にできるLSFの反応開発を行った点、変換後の化合物評価を行い有意差を示した点で非常に為になる論文でした。特に96-well plateでの反応を可能にした工夫は素晴らしいと思いました。精製を加えるかどうかで、手間が変わってきますので、人件費等も考えると相当なコストダウンになり得ると思います。

SuFExによる変換は、立体障害がそれほど変わらない為、ターゲットとなるタンパク質は変わらない一方で、官能基の特性により生理的作用を変えられる可能性があります。変化する生理的作用としては、①TryやSerによるS-F変換による共有結合生成(アミノ酸残基によるF放出)②フェノール類より強いたんぱく質とのイオン性相互作用③グルクロン酸抱合代謝等が考えられます。これらの変化により、既存の薬の力を改善できる可能性は十分にあると思います。

また検討段階ですが、SOF4の飽和溶液を使うことで、iminosulfur oxydifluorides( R-N=SOF2 )生成反応にも応用できるとのことです。これらの手法の開発により、新たな薬が生まれてくれるといいですね。特に11のFulvestrantは高価な割にクリアランス(排泄能力)が高く薬効も低いせいで、高投与量かつ高薬価の為、別薬が求められている一つでだそうで、今後の動向に注目です。

参考文献

[本論文]Liu, Z.; Li, J.; Li, S.; Li, G.; Sharpless, K.B.; Wu P.; J. Am. Chem. Soc., 2018, 140, 2919–2925. DOI: 10.1021/jacs.7b12788

  1. Dong, J.; Krasnova, L.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2014, 53, 9430−9448. DOI:10.1002/anie.201309399
  2. Li, S.; Wu, P.; Moses, J. E.; Sharpless, K. B. Angew. Chem., Int. Ed. 2017, 56, 2903−2908. DOI:10.1002/anie.201611048
  3. Chen, W.; Dong, J.; Plate, L.; Mortenson, D. E.; Brighty, G. J.; Li, S.; Liu, Y.; Galmozzi, A.; Lee, P. S.; Hulce, J. J.; Cravatt, B. F.; Saez, E.; Powers, E. T.; Wilson, I. A.; Sharpless, K. B.; Kelly, J.J. Am. Chem. Soc. 2016, 138, 7353−7364. DOI:10.1021/jacs.6b02960
  4. Baranczak, A.; Liu, Y.; Connelly, S.; Du, W.-G. H.; Greiner, E. R.; Genereux, J. C.; Wiseman, R. L.; Eisele, Y. S.; Bradbury, N. C.; Dong, J.; Noodleman, L.; Sharpless, K. B.; Wilson, I. A.; Encalada, S. E.; Kelly, J. W. J. Am. Chem. Soc. 2015, 137, 7404−7414. DOI: 10.1021/jacs.5b03042

関連書籍

The following two tabs change content below.

SQ

某企業研究員。専門は有機合成で、趣味はスポーツ(サッカー・テニス等)や音楽(バンド活動)。 「”化学”の力で、人の健康を支える」という思いを胸に日々奮闘中。0から1を生み出したい。

関連記事

  1. TBSの「未来の起源」が熱い!
  2. 女性科学者の卵を支援―「ロレアル・ユネスコ女性科学者 日本奨励賞…
  3. 元素名を名字にお持ちの方〜
  4. 書物から学ぶ有機化学 2
  5. 第95回日本化学会付設展示会ケムステキャンペーン!Part I
  6. t-ブチルリチウムの発火事故で学生が死亡
  7. ReadCubeを使い倒す(1)~論文閲覧プロセスを全て完結させ…
  8. 有機合成化学協会誌2017年8月号:C-H活性化・アリール化重合…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ヨードホルム (iodoform)
  2. ご長寿化学者の記録を調べてみた
  3. アジフェーズ法 AJIPHASE Method
  4. Reaxys Prize 2013ファイナリスト45名発表!
  5. 次世代シーケンサー活用術〜トップランナーの最新研究事例に学ぶ〜
  6. イオン液体ーChemical Times特集より
  7. Illustrated Guide to Home Chemistry Experiments
  8. ダイセル化学、筑波研をアステラス製薬に売却
  9. 情報守る“秘密の紙”開発
  10. ルイス酸添加で可視光レドックス触媒の機構をスイッチする

関連商品

注目情報

注目情報

最新記事

電気化学的HFIPエーテル形成を経る脱水素クロスカップリング反応

第151回のスポットライトリサーチは、東京農工大学農学府・千葉一裕研究室の今田泰史 (いまだ やすし…

「銅触媒を用いた不斉ヒドロアミノ化反応の開発」-MIT Buchwald研より

「ケムステ海外研究記」の第25回目は、マサチューセッツ工科大学 (MIT)博士課程で研究をされている…

2,2,2-トリクロロエトキシカルボニル保護基 Troc Protecting Group

概要2,2,2-トリクロロエトキシカルボニル(2,2,2-trichloroethoxycarb…

二重可変領域抗体 Dual Variable Domain Immunoglobulin

抗体医薬はリウマチやガンなどの難治性疾患治療に有効であり、現在までに活発に開発が進められてきた。…

サイエンスイングリッシュキャンプin東京工科大学

産業のグローバル化が進み、エンジニアにも国際的なセンスや語学力が求められているなか、東京工科大学(東…

特定の場所の遺伝子を活性化できる新しい分子の開発

ついにスポットライトリサーチも150回。第150回目は理化学研究所 博士研究員の谷口 純一 (たにぐ…

Chem-Station Twitter

PAGE TOP