[スポンサーリンク]

化学者のつぶやき

有機触媒によるトリフルオロボレート塩の不斉共役付加

[スポンサーリンク]

Organocatalytic Vinyl and Friedel-Crafts Alkylations with Trifluoroborate Salts
Lee, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2007, 129, 15438.  DOI: 10.1021/ja0767480

米プリンストン大学のMacMillanらによる報告です。

彼らによって開発された有機分子触媒、MacMillan触媒[1]は、エナール(α,β-不飽和アルデヒド)を基質とし、様々な不斉1,4-付加反応を進行させます。基質と反応して求電子性の高いイミニウム中間体を形成し、付加反応を促進させることを特徴としています(LUMO-activation)。複雑化合物の合成にも用いられるなど、大変実用性の高い触媒です(例:タミフルの合成)。

今回の論文では、有機トリフルオロボレート塩(RBF3K)[2]を求核剤として用いています。ボランの結合している炭素で選択的に反応が進行するという特徴があります。

同種の触媒を用いるFriedel-Crafts条件では、インドールの3位が選択的に反応しますが、今回の系はそれと相補的(2位選択的反応)に用いることができます(下図)。

MacMillan_BF3_3

 ボロン酸も求核剤として使えるようですが、反応点近傍に配位性官能基がないと進行しないそうです。このこともPetasis反応類似のボレート種付加機構を支持しているとのこと。

しかしながらPhBF3Kという最も単純な基質が適用外、ということも脚注に記されていました。反応表から予測されるよりも、基質一般性は思いのほか狭いのではないか?と感じました。

本反応系では、フッ化水素酸を添加することがカギになります。これによって基質のプロトン化を行うとともに、副生成物を不溶性のKBF4として沈殿させています。平衡を生成系に傾ける目的で、よく設計された系になっています。

(+)-Frondrosin B全合成への応用結果も近日報告予定、とのこと。この化合物は不斉点が一つだけとはいえ、既存法によっては制御が難しそうな位置にあります。巧く選択してくるものだなぁと思いました。(追伸:Chemical Science誌に報告されていました)

MacMillan_BF3_2

 反応の独自性に関するアピールの仕方が、とにかく巧みな論文です。レベルの高いジャーナルに通すためのお手本、ともいえる良い例ではないでしょうか。

 

関連文献

  1. Review: Lelais, G.; MacMillan, D. W. C. Aldrichimica Acta 200639, 79.
  2. Review: (a) Stefani, H. A. et al. Tetrahedron 2007, 63, 3623. (b) Molandar, G. A. et al. Aldrichimica Acta 2005, 38, 49.

関連書籍

 

関連試薬

Aldrich

mfcd03426983.gifMacMillan触媒: (5S)-(?)-2,2,3-Trimethyl-5-benzyl-4-imidazolidinone monohydrochloride

分子量:254.76

CAS:278173-23-2

製品コード:569763

用途:不斉有機分子触媒

説明:2000年に報告された、触媒的不斉Diels-Alder反応を皮切りに、MacMillanらは、1,3- 双極子環化付加反応や、Friedel-Crafts アルキル化反応、α- 塩素化反応、α- フッ素化反応、分子内Michael 反応などを高いエナンチオ過剰率で進行させることが可能な触媒を見出した。このイミダゾリジノン触媒を基本骨格として、さらに様々な触媒的不斉合成反応を見出している。

文献:Jen, W. S.; Wiener, J. J. M.; MacMillan, D. W. C. J. Am. Chem. Soc2000, 122, 9874.

その他のMacMillan触媒に関する記述: 有機分子触媒(Aldrichオンラインカタログ, PDFファイル)

 

外部リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 学会風景2001
  2. 免疫の生化学 (1) 2018年ノーベル医学賞解説
  3. ベンゼン一つで緑色発光分子をつくる
  4. カルボン酸だけを触媒的にエノラート化する
  5. 【2分クッキング】シキミ酸エスプレッソ
  6. メールのスマートな送り方
  7. 混合試料から各化合物のスペクトルを得る(DOSY法)
  8. PACIFICHEM2010に参加してきました!③

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 分子の動きを電子顕微鏡で観察
  2. 金大発『新薬』世界デビュー
  3. イオン性置換基を有するホスホール化合物の発光特性
  4. Innovative Drug Synthesis
  5. マイケル・オキーフィ Michael O’Keeffe
  6. イヴァン・フック Ivan Huc
  7. 超多剤耐性結核の新しい治療法が 米国政府の承認を取得
  8. バートン トリフルオロメチル化 Burton Trifluoromethylation
  9. 1と2の中間のハナシ
  10. 2,2,2-トリクロロエトキシカルボニル保護基 Troc Protecting Group

関連商品

注目情報

注目情報

最新記事

第49回―「超分子の電気化学的挙動を研究する」Angel Kaifer教授

第49回の海外化学者インタビューは、エンジェル・カイファー教授です。マイアミ大学化学科で超分子系電気…

日本化学会 第100春季年会 市民公開講座 夢をかなえる科学

■ 概要企画名:    市民公開講座 夢をかなえる科学主催:        公益社団法人…

第48回―「周期表の歴史と哲学」Eric Scerri博士

第48回の海外化学者インタビューは、エリック・セリー博士です。英国で教育を受け、カリフォルニア大学ロ…

ペプチド縮合を加速する生体模倣型有機触媒

2019年、ニューヨーク大学のParamjit S. Aroraらは、活性アシル中間体への求核付加遷…

第47回―「ロタキサン・カテナン・クラウンエーテルの超分子化学」Harry Gibson教授

第47回の海外化学者インタビューは、ハリー・ギブソン教授です。バージニア工科大学の化学科に所属し、プ…

女優・吉岡里帆さんが、化学大好きキャラ「DIC岡里帆(ディーアイシーおか・りほ)」に変身!

印刷インキや有機顔料世界トップシェアのDIC株式会社は、2020年1月より、数々のヒット作に出演し、…

Chem-Station Twitter

PAGE TOP