[スポンサーリンク]

化学者のつぶやき

5-ヒドロキシトリプトファン選択的な生体共役反応

[スポンサーリンク]

2017年、ボストンカレッジのAbhishek Chatterjeeらは、5-ヒドロキシトリプトファン(5-HTP)と芳香族ジアゾニウムとの高い反応性を、化学選択的なタンパク質修飾法に応用した。形成されるアゾ(N=N)結合は、亜ジチアン酸塩で効率的に開裂できるため、必要に応じて脱修飾を行なうことも可能である。

“A Chemoselective rapid Azo-Coupling Reaction (CARCR) for Unclickable Bioconjugation”
Addy, P. S.; Erickson, S. B.; Italia, J. S.; Chatterjee, A.* J. Am. Chem. Soc. 2017, 139, 11670-11673. DOI: 10.1021/jacs.7b05125


問題設定

芳香族ジアゾニウムイオンを利用したタンパク質修飾法は、チロシンを標的としたFrancisらの報告[1]を代表例としていくつか報告がなされている。しかしながらチロシン残基はタンパク表面にそれなりの数が存在するために選択性が出しづらいこと、またジアゾニウム試薬は強力な電子求引基(ニトロ基など)を備えていないと反応しないため、試薬構造に大きな制限がかかることが問題となっていた。

技術や手法のキモ

著者らはより電子豊富な側鎖を有する5-ヒドロキシトリプトファン(5-HTP)を反応相手とすることで、従来よりマイルドな条件でのタンパク質修飾法を達成している。5-HTPはセロトニンやメラトニンの原料となるアミノ酸であり、チロシン以上に側鎖が電子豊富であり、ジアゾニウム試薬との反応性も高い。たとえば4-ニトロフェニルジアゾニウムとの反応では、チロシンの4500倍の反応速度を示している。
しかし、チロシンに対しても遅いながらも反応が進んでしまうため、よりマイルドな試薬である4-カルボキシフェニルジアゾニウム及び4-メトキシフェニルジアゾニウム塩を用いることで、5-HTP選択的に反応を進めている。

主張の有効性検証

①生体条件での交差反応性のチェック

4-カルボキシフェニルジアゾニウム試薬は、チロシン及びヒスチジン、トリプトファン、リジンといった他の天然アミノ酸残基とは一切反応しない。

②タンパク質への応用

著者は最近、大腸菌のtryptophanyl-tRNA synthetase/tRNA対を改変することで、真核細胞内で効率的に5-HTPを導入可能な系を確立することに成功した[2]。これを用いてsupefolder GFPの5-HTP導入体を合成し、反応を行った。5-HTP未導入のNative体と比較したところ、5-HTP導入体のみから修飾体が得られた。

③蛍光性ジアゾニウム化合物による修飾

リンカーを介して繋げるのではなく、試薬相当の部分構造を有するフルオレセインジアゾニウム置換体を用いることで、タンパク質を修飾して蛍光性を付与できることも示している。


④抗体の修飾

ハーセプチンFab断片に5-HTPを導入した抗体断片に対しても、反応は良好に進行する。LC-MS解析で修飾分の分子量が増えていること、SDS-PAGEで調べると蛍光性が付与されていること、抗原であるHER2過剰発現細胞(SK-BR-3)に対し作用させると細胞が光ることから、抗体機能を損ねずに修飾できることが実証されている。

⑤還元による脱修飾

生成物のアゾ構造は亜ジチオン酸塩(Na2S2O4)還元によって、切断(unclick)することができる。このことは低分子モデル化合物のLC-MS解析、および光駆動型ビオチン化試薬[3]を用いるタンパク質修飾→unclickの様子をウェスタンブロッティング(ストレプトアビジン-HRPプローブ)で追跡して確かめている。しかし反応後の4-アミノ-5-HTPは酸化に弱く、MS解析では追跡できていない。

議論すべき点

  • 反応は非常に速い。タンパク質相手であっても4-ニトロ型試薬は1~2分、4-カルボキシ型試薬でも20分ほどで反応が完了する。
  • 5-HTPは体内にもともと存在するアミノ酸であり、安定で安価という利点はある。また従来法と直交性があるので複数種類の修飾も可能にする。

次に読むべき論文は?

  • 本反応+クリック反応などで複数種類の修飾を導入するためは、追加で天然アミノ酸残基を狙うか、もう一種類の非天然アミノ酸を導入する必要がある。動物細胞で行なうには技術的ハードルがあるが、著者らはそのための手法を最近報告している[4]。
  • また著者らは、動物細胞での非天然アミノ酸の導入についてのレビュー[5]も書いている。抗体ほどの巨大分子は大腸菌で作るのが厳しいため、ADCなどへの応用も考えると重要な技術である。

参考文献

  1. Hooker, J. M.; Kovacs, E. W.; Francis, M. B. J. Am. Chem. Soc. 2004, 126, 3718. DOI: 10.1021/ja031790q
  2. Italia, J. S.; Addy, P. S.; Wrobel, C. J.; Crawford, L. A.; Lajoie, M. J.; Zheng, Y.; Chatterjee, A. Nat. Chem. Biol. 2017, 13, 446. doi:10.1038/nchembio.2312
  3. (a) He, J.; Kimani, F. W.; Jewett, J. C. J. Am. Chem. Soc. 2015, 137, 9764. DOI: 10.1021/jacs.5b04367 (b) Jensen, S. M.; Kimani, F. W.; Jewett, J. C. ChemBioChem 2016, 17, 2216. DOI: 10.1002/cbic.201600508 (c) Kimani, F. W.; Jewett, J. C. Angew. Chem., Int. Ed. 2015, 54, 4051. DOI: 10.1002/anie.201411277
  4. Zheng, Y.; Addy, P. S.; Mukherjee, R.; Chatterjee, A. Chem. Sci. 2017, 8, 7211. DOI: 10.1039/C7SC02560B
  5. Italia, J. S.; Zheng, Y.; Kelemen, R. E.; Erickson, S. B.; Addy, P. S.; Chatterjee, A. Biochem. Soc. Trans. 2017, 45, 555. DOI: 10.1042/BST20160336
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 炭素繊維は鉄とアルミに勝るか? 1
  2. 日本薬学会第144年会付設展示会ケムステキャンペーン
  3. 熱がダメなら光当てれば?Lugdunomycinの全合成
  4. クリスマス化学史 元素記号Hの発見
  5. トシルヒドラゾンとボロン酸の還元的カップリング反応とその応用展開…
  6. マイルの寄付:東北地方太平洋沖地震
  7. 治療薬誕生なるか?ジカウイルスのアロステリック阻害剤開発
  8. 第三回ケムステVシンポ「若手化学者、海外経験を語る」開催報告

注目情報

ピックアップ記事

  1. インドール一覧
  2. マダニを外しやすくするある物質について(諸説あり)
  3. Branch選択的不斉アリル位C(Sp3)–Hアルキル化反応
  4. さよならGoogleリーダー!そして次へ…
  5. 砂塚 敏明 Toshiaki Sunazuka
  6. データ駆動型生成AIの限界に迫る!生成AIで信頼性の高い分子設計へ
  7. 松本・早大教授の論文、学会は「捏造の事実無し」
  8. アルツハイマー病に対する抗体医薬が米国FDAで承認
  9. 年に一度の「事故」のおさらい
  10. トヨタ、世界初「省ネオジム耐熱磁石」開発

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年3月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP