[スポンサーリンク]

化学者のつぶやき

含『鉛』芳香族化合物ジリチオプルンボールの合成に成功!①

[スポンサーリンク]

Dilithioplumbole: A Lead-Bearing Aromatic Cyclopentadienyl Analog
M. Saito, M. Sakaguchi, T. Tajima, K. Ishimura, S. Nagase, M. Hada,
Science 328, 339 (2010). doi:10.1126/science.1183648

埼玉大学理学部基礎科学科、斎藤雅一教授の研究成果が世界を賑わしています。

第14族元素である鉛を骨格に含むシクロペンタジエンジエニルアニオン種が芳香族性を有することがScience誌に報告されました。

これまでに含スズ芳香族化合物としてジリチオスタンノールや2-スタンナナフタレンの合成が報告されていましたが、今回の研究成果を受けて、ジリチオプルンボールが最も重い高周期14族元素を含む芳香族化合物として、チャンピオンレコードに名を連ねることとなりましたので紹介します。

内容の全体について解説しますので、2部構成となっています。
①部は「イントロ~結晶構造について」です。


少々前置きが長くなってしまったので・・・と言うより私の文章力が乏しく、うまくまとめきれないので二部構成にしました。

この研究成果は著名な各紙で紹介されていることからも、注目度の高さが伺えます。Nature、Scienceと言った超一流誌においても、ハイライト的な記事のタイトルはくだけた表現が多くおもしろいですよね。

YOMIURI ONLINE
MSN 産経ニュース

Chemistry World “Lead joins aromatic ring club”

Nature (Research Highlights) “Plumbing carbon rings”

また、4月24日付けの読売新聞[埼玉版]でも、斉藤教授の研究に対する熱い信念が綴られていますのでぜひご覧ください。

炭素を基礎として構築される有機化学において、「芳香族性」は重要なコンセプトの一つであると言えます。一方、炭素(C)と同族の第14族高周期元素、すなわちケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)を含む化合物における芳香族性については、未解明な点が多く存在していました。これは高周期元素が形成する多重結合化学種や低配位化学種の合成が難しかったことが主な原因となっていました。

しかしながら、1980年代から合成・実験技術が飛躍的に進歩し、不安定化合物を自在に扱うことができるようになってきました。それまで「夢の化合物」と言われていた数々の化合物の合成も達成されました。

とりわけ有機ケイ素化学の分野では日本国内にも世界トップレベルの化学者がいらっしゃるので、関連リンクの方にいくつかの研究室を独断で挙げておきます。

先日も化学者のつぶやきで六個のケイ素からなる芳香族化合物「ヘキサシラベンゼン異性体Si6Ar6」に関する記事が紹介されました。この化合物の芳香族性(dismutational aromaticity)を理解するためには、従来のHuckel則を拡張する必要があります。

このように高周期元素化合物には古典的な有機化学だけでは計りきれない特異な性質が期待できるため、非常に魅力的な化合物群です。さらに第14族のみならず、その他の族の高周期元素まで含めた有機典型元素化合物にまで研究対象を拡げれば、組み合わせ次第で無限の可能性があると言えます。
 
 
「どのような分子をデザインすれば、おもしろい性質が発現するか?

斎藤教授らが無数にある元素の中で選んだのは、第14族の中で最も高周期元素である「鉛」でした。それまでの研究で、ケイ素・ゲルマニウム・スズを含む芳香族化合物は合成されていたにも関わらず、最も高周期元素である鉛については前人未到の領域となっていました。

残されたブラックボックスに挑戦することで、14 族元素全体に対する芳香族性の概念を統一的に確立することができれば、科書の一節を飾るような大きな発見となります。これが大きなモチベーションだったのだろうと思います。

骨格に『鉛』を組み込んだ芳香族化合物・・・言うは易し。
 

2015-09-29_04-46-21


鉛は金属としての性質が強い元素であるがゆえに、その合成は非常に難しいことは想像に難くありません。

実際の合成は、先に合成したヘキサフェニルプルンボール1を-78 ºC、触媒量のナフタレン存在下、過剰量の金属リチウムで還元することで目的のジリチオプルンボール2を合成しています。

副生してくるフェニルリチウムは反応後にDMEで処理することで完全に分解し、減圧下で留去していいるあたりは工夫の賜物でしょう。単離収率78%と比較的高収率で得られている点も、膨大な時間をかけて詳細な反応の条件検討を行った結果、最適条件を見出したことが伺えます。 

最終的にジリチオプルンボール2の構造はX線結晶構造解析によって決定しています。構造的な特徴をまとめると、以下の①~④のようになります。

 

2015-09-29_04-47-18

 

① 一つのリチウム原子はPbC4環に対してη5型の配位形式を取っており、もう一方のリチウム原子は三分子のDMEに配位され、プルンボール環とは全く相互作用していない。
②PbC4環はほぼ平面構造(内角の和が539.8?)。

③環内の三つのC-C結合長はほぼ等しく、それぞれ1.410(6)、1.412(6)、1.431(6) A。
一方、前駆体1のC-C結合長は、それぞれ1.345(6)、1.354(5)、1.522(5) Aであり、ジリチオプルンボール2の環内のC-C結合は明らかに非局在化していると考えられる。

④Pb-C結合長は、それぞれ2.242(4)、2.265(5) A。一方、前駆体1のPb-C結合長は、それぞれ2.202(4)、2.211(4) Aであり、ジリチオプルンボール2のPb-C結合は伸長している。

一般的な芳香族化が起これば、元々の単結合は二重結合性を帯びるため短縮化し、元々の二重結合は単結合性を帯びるため伸長する。その結果、どちらの結合も1.5重結合程度の結合長を持ちます。しかしながら④に示したように、今回合成されたジリチオプルンボール2ではそうなっていません。

何故でしょうか?

本論文中では、この構造的な性質について明らかにするために理論計算による構造最適化を行っています。際の計算ではモデル化合物C4H6M(M = Si, Ge, Sn, Pb)及びその誘導体C4H4M・C4H4M2-を用いています。すなわちM原子上の陰電荷を増加させたそれぞれの化合物について、最安定構造を求めています。すると以下のような結果が得られました。

2015-09-29_04-48-13

 

(画像はオリジナルの論文から転載。)

ここで得られる結果は含高周期元素化合物に特有な性質として理解できます。
すなわち、sp3混成のPb原子を環内に有するC4H6Pbと、非共有電子対をPb原子上に持つC4H4Pbの構造を結合長に着目して比較すると、C4H4PbのPb-C(α)結合長の方が伸長しています(2.175から2.256 A)。

これはPb原子が非共有電子対を優先してs性の高い軌道に収容するため、Pb-C(α)結合には相対的にp性の高い軌道を振り分けることになり、結合長が伸長したと考えられます。

一方で、中性のC4H4Pbと、ジアニオニックなC4H4Pb2-の構造を、結合長に着目して比較すると4H4Pb2-のPb-C(α)結合長の方が短縮化しています(2.256から2.240 A)。これはジアニオン種が持つ陰電荷を環内に非局在化した結果であると考えられます。

つまり、ジリチオプルンボール2では「負電荷の増加に伴う軌道の再分配による結合長の伸長」「芳香族化(結合の非局在化)による結合長の短縮」が相反する効果として競合し、結果的に結晶構造中では上に示したような分子構造が得られた、ということになりそうです。

以上のように論文中では、実験的に得られた結合長について理論計算によるサポートを行なっており、スキの無い議論を展開していると思います。やはり世界最高峰の科学雑誌に投稿するためにはネタはもちろんのこと、「如何に書くか」という点が重要であるようです。

さて、すでに長くなりましたが②部へつづきます。

 

関連書籍(鉛を含めた有機典型元素化学の基礎を網羅)

 

関連リンク(高周期14族元素絡みの芳香族化合物を研究している研究室)

トリプチセン

投稿者の記事一覧

博士見習い。専門は14族を中心とした有機典型元素化学。 ・既存の有機化学に新しい風を! ・サイエンスコミュニケーションの普及と科学リテラシーの構築! これらの大きな目標のため

関連記事

  1. 企業研究者のためのMI入門①:MI導入目的の明確化と使う言語の選…
  2. 国際化学オリンピックのお手伝いをしよう!
  3. 理論化学と実験科学の協奏で解き明かしたブラシラン型骨格生合成の謎…
  4. とある化学者の海外研究生活:スイス留学編
  5. 炭素ー炭素結合を切る触媒
  6. 組曲『ノーベル化学賞』
  7. フラーレンの単官能基化
  8. 電子ノートか紙のノートか

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. Slow down, baby, now you’re movin’ way too fast.
  2. 化学者のためのエレクトロニクス講座~次世代の通信技術編~
  3. 有機分子触媒ーChemical Times特集より
  4. ピナコールカップリング Pinacol Coupling
  5. 道修町ミュージアムストリート
  6. 95%以上が水の素材:アクアマテリアル
  7. パール・クノール ピロール合成 Paal-Knorr Pyrrole Synthesis
  8. 反芳香族性を示すπ拡張アザコロネン類の合成に成功
  9. MNBA脱水縮合剤
  10. 八木 政行 Masayuki Yagi

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2010年4月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

注目情報

最新記事

化学ゆるキャラ大集合

企業PRの手段の一つとして、キャラクターを作りホームページやSNSで登場させることがよく行われていま…

最先端バイオエコノミー社会を実現する合成生物学【対面講座】

開講期間2022年12月12日(月)13:00~16:202022年12月13日(火)1…

複雑なモノマー配列を持ったポリエステル系ブロックポリマーをワンステップで合成

第445回のスポットライトリサーチは、北海道大学 大学院工学研究院 応用化学部門 高分子化学研究室(…

河崎 悠也 Yuuya Kawasaki

河崎 悠也 (かわさき ゆうや) は、日本の有機化学者。九州大学先導物質化学研究所 …

研究者1名からでも始められるMIの検討-スモールスタートに取り組む前の3つのステップ-

開催日:2022/12/07  申込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

吉田 優 Suguru Yoshida

 吉田 優(よしだ すぐる)は、日本の化学者。専門は、有機合成化学、ケミカルバイオロジー。2…

小山 靖人 Yasuhito Koyama

小山 靖人(こやま やすひと)は、日本の有機化学者。富山県立大学工学部医薬品工学…

ポンコツ博士の海外奮闘録XIV ~博士,釣りをする~

シリーズ累計20話!!タイトルの○数字がなくなりました。節々の回は出来る限り実験ネタや個人的なグッと…

定型抗精神病薬 「ピモジド」の化学修飾により新規難治性疼痛治療薬として極めて有望な化合物の創製に成功

第444回のスポットライトリサーチは、近畿大学大学院 薬学研究科 薬学専攻 病態薬理学研究室の笠波 …

【好評につきリピート開催】マイクロ波プロセスのスケールアップ〜動画で実証設備を紹介!〜 ケミカルリサイクル、乾燥炉、ペプチド固相合成、エステル交換、凍結乾燥など

<内容>マイクロ波プロセスのスケールアップがどのように実現されるか、実証設備の動画も交えてご紹介…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP