[スポンサーリンク]

スポットライトリサーチ

複数酵素活性の同時検出を可能とするactivatable型ラマンプローブの開発

[スポンサーリンク]

第292回のスポットライトリサーチは、東京大学大学院 薬学系研究科・藤岡礼任さんにお願いしました。

藤岡さんの所属する浦野研究室(薬品代謝化学教室)では、生細胞内・動物個体内で起こる種々のイベントを高感度に可視化する小分子蛍光プローブの論理的設計指針や、それに基づき創製されたプローブを利用した医療・診断への応用が蓄積されています。これまでにも数多くの研究がケムステにて紹介されており、それを見るたびに筆者は無駄を含まず精緻を極めた分子にこそ理想的な機能が宿るのだと痛感(し、ふと自分が設計した分子に目を落としては半ば絶望)させられます。今回の成果は生体内の加水分解酵素と反応しラマン信号を発する構造へと誘導されるラマンプローブ群を新たに開発し、生細胞内で複数の酵素活性を同時にイメージングすることに成功したという内容です。J. Am. Chem. Soc.誌原著論文およびプレスリリースとして公開されています。

“Multicolor Activatable Raman Probes for Simultaneous Detection of Plural Enzyme Activities”
Fujioka H, Shou J, Kojima R, Urano Y, Ozeki Y, Kamiya M
J. Am. Chem. Soc. 2020, 142, 20701-20707. doi:10.1021/jacs.0c09200

指導にあたっている神谷真子准教授から、藤岡さんに関する人物評を以下のように頂いています。修士課程修了後は同研究室にて博士課程へと進学されるとのことで、今後とものご活躍が期待されます。それでは今回のインタビューもお楽しみください!

藤岡さんは学部4年次に当研究室に配属され、『ラマン散乱を検出原理とする機能性化学プローブの開発』という研究に取り組んでいます。この研究は、我々の持つ蛍光プローブ開発の知見・技術を新しい領域で活用することを目指しており、既存知識の習得と異分野への展開という2つのベクトルのバランスをとって進める必要がありますが、藤岡さんは2年間という短期間で見事に本成果としてまとめ上げました。それは、『自ら考え、楽しんで研究を進める』姿勢と、研究を計画的に進める能力に長けているからだと思います。また最近では、修士論文を提出期限の2カ月以上前に仕上げてきて、現在既に別の複数の研究テーマを進めており、藤岡さんには驚かされることが多いです。来年度からの博士課程で、どのように研究を展開してくれるのか、今からとても楽しみにしています。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

光で分子振動を検出するラマン顕微法は,特にラマンプローブと組み合わせることで,蛍光法と比べて高い多重検出能を実現できることから近年注目を浴びています。しかし,既存のラマンプローブは常に信号を示すalways-on型のプローブであり,生体内の分子と反応してラマン信号がoffからonに変化するactivatableな特性を有するラマンプローブは開発されていないため,その応用先が限られていました。今回,我々は世界で初めて,生体内の加水分解酵素と反応してラマン信号がoffからonに変化するactivatable型のラマンプローブの開発に成功し,生きた細胞内において複数の標的酵素の活性を同時にイメージングすることに成功しました(図)。本プローブで用いたラマン信号の制御原理は他のラマンプローブ開発においても一般化することが可能であるため,今後同様の信号制御原理に基づいて,本プローブのように同時に複数の標的分子を可視化できるラマンプローブ群を拡充することができれば,ラマン顕微法の多重検出能を活かしたマルチターゲットな生命科学研究が大きく発展し,生命現象の更なる理解につながることが期待されます。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

プローブ母核の探索です。今回プローブ母核の候補として合成した一連の色素は生理的条件下であまり安定性が高くないものがほとんどでした。特にプローブ化のためにキサンテン環3位のアミノ基をアミド化した化合物はさらに安定性が悪くなり,最初に合成できたと思ったプローブのモデル化合物は吸収スペクトルを測定しようとした時にはもう他の化合物に分解してしまっていました。そこで様々な骨格の色素の合成を行って安定性を中心に評価を行っていきました。すると合成した色素の種類が増えてくるにつれて,構造展開によってどれほど安定性が変化するかの法則性が見えてきました。本研究のプローブ母核である9CN-JCPを合成して評価を行った時はある程度予想通りの結果が得られ,これならいけるかも!という手応えがありました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

ラマン分光法についての勉強です。当研究室では蛍光プローブの開発は盛んに行われていますが,ラマンプローブの開発を行った例はこれまでなく,ラマンイメージングについての知見もほとんどなかったので,教科書的な理論の理解から実際に得られるデータの解釈にいたるまで,はじめは分からないことばかりでした。ですが共同研究先の工学部の皆様にも手厚くサポートいただきましたし,なにより自分の知らないことについて調べていくのは単純に面白くもあったので,新しい世界の扉を開くような感覚でこの分野について学んでいけたのは良かったかなと思います。その他にも研究全体を通して大変なことは色々ありましたが,日頃から先生方と密にディスカッションをして,常に課題を共有できていたというのは非常に大きかったと思います

Q4. 将来は化学とどう関わっていきたいですか?

原子レベルで分子をデザインすることができるのが化学の最大の魅力だと思っているのですが,このような化学の魅力を他分野の方々に伝えられるような仕事をしていければと思います。本研究を通しても「化学の力を使えばこんなことができるようになります」ということを,顕微鏡を開発されている物理学者の方々や実際にそのユーザーになられる生物学者の方々に知っていただいて,より幅広い分野の方々に化学の魅力に触れてもらえれば幸いです。また,機能性を有した有機小分子のラマンプローブはまだまだ数が少なく,今後化学者が有機化学・光化学・物理化学の知見を活用して新しい機能を持つラマンプローブを開発することができればラマンイメージング分野は更なる発展を遂げることができると考えているので,このような学問をまたいだ境界領域の発展にも貢献していければと思います。これからも色々な方々に興味を持ってもらえるような面白い分子を作っていきたいです。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

月並みですが,とにかくトライ&エラーの回数を増やすことは大事だったと思います。研究を始めたばかりのいつぞやの飲み会でとある先生に言われた「どうせ定期的に失敗するから,失敗のサイクルを早めることを意識したらいいよ」という言葉がとても印象的でした。たとえ失敗であっても何かしら試行を重ねて議論できる材料が増えれば,次第にできることとできないことが見えてくるので,それをもとにうまく微調整しながら研究の方向性を定めることができたのかなと思います。僕自身「とりあえず作ってみるか」でスタートしてあっけなく失敗することが多いのですが,いずれしていたであろう失敗に早めに気づけて良かった,という感じにプラスに捉えるようにしています。

最後になりますが,本研究のラマン測定等において大変お世話になった東京大学工学部の小関泰之准教授と寿景文氏に,この場を借りて深く御礼申し上げます。

研究者の略歴

写真

名前:藤岡 礼任(ふじおか ひろよし)
所属:東京大学大学院 薬学系研究科 薬品代謝化学教室 修士課程2年
研究テーマ:機能性ラマンプローブの開発

関連リンク

関連書籍

[amazonjs asin=”B011QCXMQ4″ locale=”JP” title=”ラマン分光法 (分光法シリーズ)”] [amazonjs asin=”4061571095″ locale=”JP” title=”赤外・ラマン分光法 (分光測定入門シリーズ6)”] [amazonjs asin=”4320044584″ locale=”JP” title=”赤外・ラマン分光分析 (分析化学実技シリーズ 機器分析編)”]

khaki

投稿者の記事一覧

博士(薬科学). 関西でポスドク中. ケミカルバイオロジーや生体関連化学の研究をしています。分子の力で未知の生命現象を解明したい。ラーメンとリプトンミルクティーでできている。

関連記事

  1. 化学の祭典!国際化学オリンピック ”53rd IChO 2021…
  2. 論文をグレードアップさせるーMayer Scientific E…
  3. マテリアルズ・インフォマティクスにおける回帰手法の基礎
  4. 葉緑素だけが集積したナノシート
  5. 化学研究で役に立つデータ解析入門:回帰分析の応用編
  6. 窒素を直接 “消去” する分子骨格変換
  7. マテリアルズ・インフォマティクスにおけるデータ0からの初期データ…
  8. 炭素ー炭素結合を切る触媒

注目情報

ピックアップ記事

  1. ファージディスプレイでシステイン修飾法の配列選択性を見いだす
  2. メタンハイドレート Methane Hydrate
  3. クリス・クミンス Christopher C. Cummins
  4. 投票!2015年ノーベル化学賞は誰の手に??
  5. 湿度によって色が変わる分子性多孔質結晶を発見
  6. 取扱いが容易なトリフルオロアセチル化試薬
  7. マテリアルズ・インフォマティクスにおける従来の実験計画法とベイズ最適化の比較
  8. Baird芳香族性、初のエネルギー論
  9. サントリー生命科学研究者支援プログラム SunRiSE
  10. ポケットにいれて持ち運べる高分子型水素キャリアの開発

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年2月
1234567
891011121314
15161718192021
22232425262728

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP