[スポンサーリンク]

化学者のつぶやき

含ケイ素三重結合化合物(Si≡Mo、Si≡C)

炭素化合物中で見られる「常識」は、高周期元素では通用しないことが多々あります。

例えば「炭素アセチレン」は、皆さんご存知のとおり直線構造をしています。
ところが炭素を同族高周期のケイ素に置き換えた「ジシリン」は、トランスに折れ曲がった構造をしています[1]。

 

rei0801101.gif

 

つまり、一つ周期を変えた元素を含むだけで、化合物の性質は大きく変わってしまうんですね。まぁ、当然と言えば当然かもしれませんが、これこそが、高周期元素を扱う化学の魅力の一つなのかもしれません。

さて、最近、このケイ素を含む新規三重結合化学種(Mo≡SiとSi≡C)が合成され、Angewandte誌にVIPとして報告されていたので、まとめて紹介したいと思います。

一つ目は、ドイツBonn大学のFilippouら[2]によるMo≡Si化合物について。

A. C. Filippou, O. Chernov, K. W. Stumpf, G. Schnakenburg, Angew. Chem. Int. Ed. 2010, 49, 3296 – 3300, DOI: 10.1002/anie.201000837

実は、14年も前に、GeとMoの三重結合化学種 3が以下の方法で合成されています[3]。

 

rei0801102.gif

それなのに、どうしてゲルマニウムと同じ高周期14族元素であるケイ素の類縁体が合成できなかったかというと、ケイ素化合物で 1に相当する前駆体が無かったわけですね。そこでFilippouらが用いた手法は、近年ちらほらと目にするようになった「N-ヘテロカルベン(NHC)で安定化されたシリレン」を前駆体に用いる方法です。

まずシリレン 4とLi[CpMo(CO)3]との反応により、NHCが付加したSi=Mo化合物 5を合成します。そしてルイス酸 B(p-tol)3存在下、144℃まで加熱してNHCをケイ素上から引き剥がす、という力技によってMo≡Si化学種 6の合成に成功しています。
rei0801103.gif

その構造がこちら(論文より引用)。

rei080110cmpd1.gif

Mo≡Si-Rのケイ素周りの結合角は173.5°と、ほぼ直線構造をしています。
ほうほう、なるほど・・・
ケイ素を含む三重結合化合物って、いつも折れ曲がり構造になるという訳じゃ無かったんですね。
どうしてでしょう、皆さん解りますか?

そして二つ目は、フランスToulouse大のKato(日本人!)及びBaceiredoら[4]によって合成されたSi≡C化合物について。

 

D. Gau, T. Kato, N. Saffon-Merceron, A. D. Czar, F. P. Cosso, A. Baceiredo, Angew. Chem. Int. Ed. 2010(Early View), 49, DOI: 10.1002/anie.201003616

 

こちらはリン配位子で安定化されたシリレン 7を前駆体としています。 7にジアゾ化合物 8を導入して9を合成し、最後に低温下での光照射によって脱窒素化することでSi≡C化学種 10の合成・単離に成功しています。

rei0801104.gif

その構造はこちら(論文より引用)。

rei080110cmpd2.gif

Si≡C-R’の炭素周り(178.2°)はほぼ直線構造で、ケイ素周りに関しては5つの結合ができている(超原子価状態)ように見えるのに三重結合(低配位)化合物である、と もはや訳がわかりません
(※ π*(SiC)にリンの孤立電子対が配位した3中心4電子システムです!)。

とりあえず細かい特徴・性質はさておき、上記二種類の化合物は、いずれも基礎化学的な視点からすごく重要な化合物であると筆者は思います。反応性などの詳細は、今後明らかにされてくることでしょうし、類似の方法でCr≡SiやGe≡C等も一気に合成できるかもしれませんね。

 

それにしても、炭素では簡単に合成できる化合物でも、他の元素では未だに達成されていない未開拓化合物ってまだまだたくさんあるんですね。

筆者は、炭素化合物はもちろん、炭素以外の13~16族もしくはそれらの高周期元素を含む化合物を数多く触ってきましたが、炭素化学の常識が通用しない場面に何度も出くわしてきました

そしてある時からふと「逆に言えば、炭素はなんて特別な元素なんだろう」と感じるようになりました。

特別な性質を無数に持っているのに、有機化学の世界を支配的に構成しているがゆえ一般的と感じてしまうのが炭素の化学なのかもしれません。有機化学者の皆さんが日々行っている実験では、そんな特別なもの扱っているんですよ、とこっそり伝えておきます。

 

 引用文献

[1] (a) A. Sekiguchi, R. Kinjo, M. Ichinohe, Science, 2004, 305, 1755,
DOI: 10.1126/science.1102209
    (b) T. Sasamori, K. Hironaka, Y. Sugiyama, N. Takagi, S. Nagase, Y. Hosoi, Y. Furukawa,
N. Tokitoh, J. Am. Chem. Soc. 2008, 130, 13856, DOI:10.1021/ja8061002
[2] Filippou Group
[3] R. S. Simons, P. P. Power, J. Am. Chem. Soc. 1996, 118, 11966-11967,
DOI: 10.1021/ja963132u
[4]  Baceiredo & Kato Group

 

関連書籍

 

The following two tabs change content below.
StarryNight

StarryNight

関連記事

  1. 2010年ノーベル化学賞予想―トムソン・ロイター版
  2. 高圧ガス甲種化学 受験体験記① ~概要・申し込み~
  3. Scifinderが実験項情報閲覧可能に!
  4. ビニグロールの全合成
  5. edXで京都大学の無料講義配信が始まる!
  6. 天然有機化合物のNMRデータベース「CH-NMR-NP」
  7. 『元素周期 ~萌えて覚える化学の基本~』がドラマCD化!!!
  8. 官能基「プロパルギル基」導入の道

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ベンゼン環が壊れた?!ー小分子を活性化するー
  2. 国連番号(UN番号)
  3. 教科書を書き換えるか!?ヘリウムの化合物
  4. ネッド・シーマン Nadrian C. Seeman
  5. 「触媒的オリゴマー化」によるポリピロロインドリン類の全合成
  6. 医薬品の黄金世代到来?
  7. 世界医薬大手の05年売上高、欧州勢伸び米苦戦・武田14位
  8. 金属を超えるダイヤモンド ーボロンドープダイヤモンドー
  9. ロッセン転位 Lossen Rearrangement
  10. 香月 勗 Tsutomu Katsuki

関連商品

注目情報

注目情報

最新記事

北エステル化反応 Kita Esterification

概要ルテニウム触媒存在下、エチニルエチルエーテル試薬を脱水剤として用い、カルボン酸とアルコールか…

一人二役のフタルイミドが位置までも制御する

N-ヒドロキシフタルイミドを用いる逆マルコフニコフ型のヒドロアミノ化が報告された。遷移金属触媒および…

ジアゾニウム塩が開始剤と捕捉剤を“兼務”する

アリールジアゾニウム塩を用いたプレニルカルバマート/ウレアのシクロアミノジアゾ化反応が開発された。入…

パラジウム光触媒が促進するHAT過程:アルコールの脱水素反応への展開

2016年、イリノイ大学シカゴ校・Vladimir Gevorgyanらは、Pd(0)触媒の共存下、…

ウラジミール・ゲヴォルギャン Vladimir Gevorgyan

ウラジミール・ゲヴォルギャン(Vladimir Gevorgyan、1956年8月12日-)は、アメ…

有機合成化学協会誌2018年11月号:オープンアクセス・英文号!

有機合成化学協会が発行する有機合成化学協会誌、2018年11月号がオンライン公開されました。今月…

PAGE TOP