[スポンサーリンク]

化学者のつぶやき

環歪みを細胞取り込みに活かす

[スポンサーリンク]

創薬研究やバイオプローブの開発において、しばしば問題になるのが分子の膜透過性。特にオリゴヌクレオチドやタンパク質などの大きな分子は膜透過効率が低く、医薬応用の大きな障害となります。今回は分子の性質をうまくつかって、その障害の解決に取り組んでいる一例を紹介したいと思います。

 

細胞膜のなかに入りたい

膜透過効率を上げる手法として、「膜透過性ペプチド」(Cell-Penetrating Peptide:CPP)を利用する方法があります。CPPはアルギニンを多く含んだ塩基性のペプチドで、細胞膜を能動的に透過することが知られているからです。従って、取り込ませたいタンパク質やペプチドなどにCPPを結合させると、効率的に細胞内へ導入することができます。

しかし、CPPは細胞毒性を持つ、必ず機能するとは限らない(当たり前ですが)などの問題があります。

そこでCPPによらない、新しい膜透過機構として、膜透過性ポリジスルフィド(Cell-Penetrating poly(disulfide)s: CPDs)が開発されています。CPDは図 1に示したように、細胞表面のチオール基とジスルフィド交換反応を起こし、細胞表面に固定化されます。このときCPDに細胞内へ導入したい基質をつけておけば、基質はエンドサイトーシスなどを経て、細胞内に取り込まれます。[1]

 

図1 Schematic illustration of a cellular uptake via S-S exchange.

図1 Schematic illustration of a cellular uptake via S-S exchange.

 

さて、ジェノバ大学のMatileらは近年、このCPDsの応用としてsiCPDs(substrate-initiated, self-inactivating CPDs)を報告しました(Figure 2)。[2] これは、細胞内に導入したい分子をポリマー開始剤として用い、細胞膜透過に有利となるグアニジンを有するモノマーなどと重合することでポリジスルフィド化合物を合成し、膜透過させるものです。

 

図2 Concept of substrate-initiated, self-inactivating CPD transporters.

図2 Concept of substrate-initiated, self-inactivating CPD transporters.

 

環歪みを細胞取り込みに活かす

さらに最近Matileらは、高い反応性をもつ環状ジスルフィドが、ポリマー化しなくても、膜表面への固定化され、膜透過することを報告しました。

 

“Ring Tension Applied to Thiol-Mediated Cellular Uptake”

Gasparini, G.; Sargsyan, G.; Bang, E. K.; Sakai, N.; Matile, S. Angew. Chem, Int. Ed. 2015, 7328. DOI: 10.1002/anie.201502358

 

発光団としてカルボキシルフルオレセインを導入した化合物37をHeLa Kyoto細胞に添加し、フローサイトメトリーによってこれらの細胞の蛍光強度を測定しました(図 3)。ここから、最大の環歪みを持つ化合物3で蛍光強度が最大であり、環歪みの小さな化合物4,5、直鎖で環歪みを持たない化合物6,7の順に蛍光強度が小さくなることがわかりました。この結果は、細胞膜上でのジスルフィド交換反応がCSSC結合の二面角が小さいほど、すなわち反応性の高いジスルフィドほど、有利に反応が進行することを示唆しています。さらに論文中ではあらかじめ膜表面のチオール基を活性化または不活性化させた後に活性評価実験をおこなうことで、膜表面への固定化のメカニズムを検証しています。

 

図3 Flow cytometry data showing the fluorescence of HeLa Kyoto cells after incubation of fluorophores 2-8.

図3 Flow cytometry data showing the fluorescence of HeLa Kyoto cells after incubation of fluorophores 2-8.

 

さらにMatileらは先ほどのHeLa Kyoto細胞の顕微鏡写真を撮影することに成功しています。この結果から蛍光団が導入された環状ジスルフィド化合物34は細胞表面のチオールにトラップされているだけではなく、細胞内に取り込まれていることが確認できます。化合物34のCSSC二面角の差はわずかであるにもかかわらず(図 4)、この環歪みの小さな差が非常に有意に働いていますね。

 

図4 CLSM images of HeLa Kyoto cell after incubation of 3 and 4.

図4 CLSM images of HeLa Kyoto cell after incubation of 3 and 4.

 

このように、細胞取り込みを促進する分子として大きな環歪みを持ったジスルフィド化合物に着目し、この環歪みが細胞取り込みに大きな影響を与えることを明らかとしました。膜透過の機構に関してはまだ十分な議論がされていませんが、 彼らは今回の手法が一般的なエンドサイトーシスとは異なる機構で起こっている可能性を指摘しています。本研究は、膜透過を促進する小分子設計の新しいコンセプトを提案しただけでなく、その膜透過の機構という基礎研究の観点からも面白い内容だと思います。

 

関連書籍

 

参考文献

  • Torres, A.; Gait, M. Trends in Biotechnology 2012, 30, 185. DOI: 10.1016/j.tibtech.2011.12.002
  • Gasparini, G.; Bang, E.-K.; Molinard, G.; Tulumello, D.; Ward, S.; Kelley, S.; Roux, A.; Sakai, N.; Matile, S. J. Am. Chem. Soc. 2014, 136, 6069. DOI: 10.1021/ja501581b

 

外部リンク

 

 

 

The following two tabs change content below.
bona
愛知で化学を教えています。よろしくお願いします。
bona

最新記事 by bona (全て見る)

関連記事

  1. 非天然アミノ酸触媒による立体選択的環形成反応
  2. 「anti-マルコフニコフ型水和反応を室温で進行させる触媒」エー…
  3. pH応答性硫化水素ドナー分子の開発
  4. 「有機合成と生化学を組み合わせた統合的研究」スイス連邦工科大学チ…
  5. 「フラストレイティド・ルイスペアが拓く革新的変換」ミュンスター大…
  6. 細菌を取り巻く生体ポリマーの意外な化学修飾
  7. 貴金属に取って代わる半導体触媒
  8. 中国へ講演旅行へいってきました①

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 触媒的芳香族求核置換反応
  2. 不安定化合物ヒドロシランをうまくつくる方法
  3. 天然物の生合成に関わる様々な酵素
  4. ハーバード大Whitesides教授プリーストリーメダルを受賞
  5. ルイス酸添加で可視光レドックス触媒の機構をスイッチする
  6. アジサイには毒がある
  7. (-)-Cyanthiwigin Fの全合成
  8. カルバメート系保護基 Carbamate Protection
  9. もし新元素に命名することになったら
  10. フランシス・アーノルド Frances H. Arnold

関連商品

注目情報

注目情報

最新記事

強塩基条件下でビニルカチオン形成により5員環をつくる

LiHMDSと弱配位性アニオン塩触媒を用いた分子内C–H挿入反応が開発された。系内で調製したリチウム…

韓国へ輸出される半導体材料とその優遇除外措置について

経済産業省は1日、日韓の信頼関係が著しく損なわれたと判断し、韓国向けの輸出管理を強化すると発表した。…

Mestre NovaでNMRを解析してみよう

日本ではJEOLのマシンが普及していることもあり、DeltaでNMRの解析をしている人が多いとは思い…

奈良坂・プラサード還元 Narasaka-Prasad Reduction

概要βヒドロキシケトンを立体選択的に還元し、syn-1,3-ジオールを与える方法。anti-1,…

CASがSciFinder-nの画期的逆合成プランナーの発表で研究・開発の生産性向上を促進

CAS launched a computer-aided retrosynthetic analy…

CRISPR(クリスパー)

CRISPRは、clustered regularly interspaced short pali…

Chem-Station Twitter

PAGE TOP