[スポンサーリンク]

化学者のつぶやき

わずか6工程でストリキニーネを全合成!!

 

A synthesis of strychnine by a longest linear sequence of six steps
Martin, D. B. C.; Vanderwal, C. D. Chem. Sci. 2011, DOI: 10.1039/c1sc00009h

 

ストリキニーネ(Strychinine)はインドやスリランカ、東南アジアやオーストラリア北部などに成育する植物マチンの種子から得られるアルカロイドです。ミステリー好きにはお馴染みの猛毒成分(致死量0.1~0.03g)ですが、大変にユニークな化学構造をしていることでも有名です。分子量334という小柄な分子ながら、ご覧のとおりガチガチの縮環骨格の中に、いくつかの官能基および不斉点を密度高く持っています。このためかつては『知られる中で、もっとも小さく、もっとも複雑な化合物 (for its molecular size it is the most complex substance known)』 と言われていたほどです。

この構造的特性ゆえに合成化学者の興味を長く惹き続けてやまない化合物でもあり、これまでに10数例を数える全合成が達成されてきました。いずれの全合成でも十人十色に時代を反映した方法論が用いられています。勿論その合成はまったく一筋縄に行かないため、ストリキニーネの全合成を達成した化学者は、なべて「ワールドクラスの合成化学者」として認知されてきています。これら一連の仕事を通して眺めることで、「全合成」という学問の歴史と進歩を俯瞰することもでき、まさに『全合成の顔』たる化合物といえるでしょう。

既報の全合成のほとんどは20工程以上を必要としており、短いものでも十数工程の変換が必要です。しかしUCIrvineの若手化学者Christopher Vanderwalは、その記録を大幅に更新し、わずか6工程での全合成を達成しました。これほど複雑な分子にあっては十数工程でも極限値に近いと考えられてきましたが、今回そのイメージは完全にぶっ飛ばされてしまった感じです。

そんな極限まで突き詰められた合成ルートとはいかようなものか、以下見ていくことにしましょう。


この合成で重要な役割を果たしているのは、Zincke Saltと呼ばれる化合物です。これは2級アミン存在下に開環反応を起こし、以下のような高反応性ユニットを与えます。このZincke Salt自体は古くから存在が知られていますが、長らくその価値が発掘されないまま捨て置かれていた物質でもありました。

Strychinine_6step_3.gifVanderwalはこの化合物の有用性を見抜き、Zincke Saltを用いた変換を種々確立[1]、さらにはストリキニーネのStychnos骨格構築へと応用しました[2]。すなわち、図のように保護トリプタミンとZincke Saltを反応させて、引き続き[4+2]様反応を行うことでE環部を構築したのです。あとは別途合成した炭素フラグメントをくっつけ、Brook転位を活用した共役付加によって、典型前駆体たるWieland-Gumlichアルデヒドへと導いています。いずれもさっくり進行しているように見えますが、野心的な全合成の例に漏れず、やはりあちこちで苦労があったようです(どこで苦労していたかは、論文をご覧ください)。

Strychinine_6step_2.gifこれより短いルートはさすがにもう無理では?・・・ここまでできるのか!と思わざるを得ません。進歩に進歩を重ねた”有機合成の極み”が顕現した成果と言えそうです。ただただ、まったく凄まじい、と感じ入るばかりですね。

 

関連文献

[1] for example: Steinhardt, S. E.; Silverston, J. S.;  Vanderwal, C. D. J. Am. Chem. Soc. 2008, 130, 7560. DOI: 10.1021/ja8028125
[2] Martin, D. B. C.; Vanderwal, C. D. J. Am. Chem. Soc. 2009, 131, 3472. DOI: 10.1021/ja900640v

 

関連リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 【PR】Twitter、はじめました
  2. 学会ムラの真実!?
  3. 新規抗生物質となるか。Pleuromutilinsの収束的短工程…
  4. 人が集まるポスター発表を考える
  5. オゾンと光だけでアジピン酸をつくる
  6. インフルエンザ対策最前線
  7. 工業製品コストはどのように決まる?
  8. 構造式の効果

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ニッケル触媒による縮合三環式化合物の迅速不斉合成
  2. デュアルディスプレイDNAコード化化合物ライブラリーの改良法
  3. 海の生き物からの贈り物
  4. 第1回ACCELシンポジウムを聴講してきました
  5. 有機化学者の仕事:製薬会社
  6. ピラーアレーン
  7. ヤコブセン転位 Jacobsen Rearrangement
  8. 2017年の有機ELディスプレイ世界市場は11年比6.6倍の2兆186億円。
  9. 岩村 秀 Hiizu Iwamura
  10. モーリス・ブルックハート Maurice S. Brookhart

関連商品

注目情報

注目情報

最新記事

アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化

2015年、プリンストン大学・D. W. C. MacMillanらは、水素移動触媒(HAT)および…

三種類の分子が自発的に整列した構造をもつ超分子共重合ポリマーの開発

第123回のスポットライトリサーチは、テキサス大学オースティン校博士研究員(Jonathan L. …

超分子化学と機能性材料に関する国際シンポジウム2018

「超分子化学と機能性材料に関する国際シンポジウム2018」CEMS International Sy…

アメリカで Ph. D. を取る –研究室に訪問するの巻–

この連載は、米国の大学院で Ph.D. を取得することを目指す学生が日記感覚で近況を記録するためのも…

光触媒ラジカルカスケードが実現する網羅的天然物合成

四川大学のYong Qinらは、可視光レドックス触媒によって促進される窒素ラジカルカスケード反応によ…

有機反応を俯瞰する ー縮合反応

今回は、高校化学でも登場する有機反応であるエステル合成反応を中心に、その反応が起こるメカニズムを解説…

Chem-Station Twitter

PAGE TOP