[スポンサーリンク]

化学者のつぶやき

わずか6工程でストリキニーネを全合成!!

[スポンサーリンク]

 

A synthesis of strychnine by a longest linear sequence of six steps
Martin, D. B. C.; Vanderwal, C. D. Chem. Sci. 2011, DOI: 10.1039/c1sc00009h

 

ストリキニーネ(Strychinine)はインドやスリランカ、東南アジアやオーストラリア北部などに成育する植物マチンの種子から得られるアルカロイドです。ミステリー好きにはお馴染みの猛毒成分(致死量0.1~0.03g)ですが、大変にユニークな化学構造をしていることでも有名です。分子量334という小柄な分子ながら、ご覧のとおりガチガチの縮環骨格の中に、いくつかの官能基および不斉点を密度高く持っています。このためかつては『知られる中で、もっとも小さく、もっとも複雑な化合物 (for its molecular size it is the most complex substance known)』 と言われていたほどです。

この構造的特性ゆえに合成化学者の興味を長く惹き続けてやまない化合物でもあり、これまでに10数例を数える全合成が達成されてきました。いずれの全合成でも十人十色に時代を反映した方法論が用いられています。勿論その合成はまったく一筋縄に行かないため、ストリキニーネの全合成を達成した化学者は、なべて「ワールドクラスの合成化学者」として認知されてきています。これら一連の仕事を通して眺めることで、「全合成」という学問の歴史と進歩を俯瞰することもでき、まさに『全合成の顔』たる化合物といえるでしょう。

既報の全合成のほとんどは20工程以上を必要としており、短いものでも十数工程の変換が必要です。しかしUCIrvineの若手化学者Christopher Vanderwalは、その記録を大幅に更新し、わずか6工程での全合成を達成しました。これほど複雑な分子にあっては十数工程でも極限値に近いと考えられてきましたが、今回そのイメージは完全にぶっ飛ばされてしまった感じです。

そんな極限まで突き詰められた合成ルートとはいかようなものか、以下見ていくことにしましょう。


この合成で重要な役割を果たしているのは、Zincke Saltと呼ばれる化合物です。これは2級アミン存在下に開環反応を起こし、以下のような高反応性ユニットを与えます。このZincke Salt自体は古くから存在が知られていますが、長らくその価値が発掘されないまま捨て置かれていた物質でもありました。

Strychinine_6step_3.gifVanderwalはこの化合物の有用性を見抜き、Zincke Saltを用いた変換を種々確立[1]、さらにはストリキニーネのStychnos骨格構築へと応用しました[2]。すなわち、図のように保護トリプタミンとZincke Saltを反応させて、引き続き[4+2]様反応を行うことでE環部を構築したのです。あとは別途合成した炭素フラグメントをくっつけ、Brook転位を活用した共役付加によって、典型前駆体たるWieland-Gumlichアルデヒドへと導いています。いずれもさっくり進行しているように見えますが、野心的な全合成の例に漏れず、やはりあちこちで苦労があったようです(どこで苦労していたかは、論文をご覧ください)。

Strychinine_6step_2.gifこれより短いルートはさすがにもう無理では?・・・ここまでできるのか!と思わざるを得ません。進歩に進歩を重ねた”有機合成の極み”が顕現した成果と言えそうです。ただただ、まったく凄まじい、と感じ入るばかりですね。

 

関連文献

[1] for example: Steinhardt, S. E.; Silverston, J. S.;  Vanderwal, C. D. J. Am. Chem. Soc. 2008, 130, 7560. DOI: 10.1021/ja8028125
[2] Martin, D. B. C.; Vanderwal, C. D. J. Am. Chem. Soc. 2009, 131, 3472. DOI: 10.1021/ja900640v

 

関連リンク

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 層状複水酸化物のナノ粒子化と触媒応用
  2. ケムステのライターになって良かったこと
  3. 触媒的syn-ジクロロ化反応への挑戦
  4. 有機合成化学協会誌2020年5月号:特集号 ニューモダリティ;有…
  5. 【21卒イベント】「化学系学生のための企業研究セミナー」 大阪1…
  6. Reaxys体験レポート反応検索編
  7. 天然階段状分子の人工合成に成功
  8. 高専シンポジウム in KOBE に参加しました –その 2: …

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 2005年ノーベル化学賞『オレフィンメタセシス反応の開発』
  2. グルタミン酸 / Glutamic Acid
  3. 米ファイザー、コレステロール薬の開発中止
  4. Practical Functional Group Synthesis
  5. プラスマイナスエーテル!?
  6. マイクロプラスチックの諸問題
  7. 第20回「転んだ方がベストと思える人生を」ー藤田 誠教授
  8. 山本 尚 Hisashi Yamamoto
  9. 地球温暖化が食物連鎖に影響 – 生態化学量論の視点から
  10. 第37回反応と合成の進歩シンポジウムに参加してきました。

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

ホウ素でがんをやっつける!

「ホウ素」と言ったときに皆さんは何を思い浮かべますか?鈴木宮浦カップリング、ルイス酸(BF3…

広瀬すずさんがTikTok動画に初挑戦!「#AGCチャレンジ」を開始

TikTok For BusinessとAGC株式会社は、AGCをより多くの人に知っていただくことを…

新規性喪失の例外規定とは?

bergです。今回は論文投稿・学会発表と特許出願を同時に行うための新規性喪失の例外規定の適用手続きに…

新車の香りは「発がん性物質」の香り、1日20分嗅ぐだけで発がんリスクが高まる可能性

「新車の香り」には、がんや生殖障害、子どもの先天性欠損症などを引き起こす可能性があるベンゼンやホルム…

溶液を流すだけで誰でも簡単に高分子を合成できるリサイクル可能な不均一系ラジカル発生剤の開発

第 295 回のスポットライトリサーチは東京大学豊田研究室の博士課程 1 年 岡美奈実さんと修士課程…

Carl Boschの人生 その9

Tshozoです。書いてると色々膨らんで収集がつかなくなりますね。ということで前回の続き。W…

創薬・医療系ベンチャー支援プログラム”BlockbusterTOKYO” ビジネスプラン発表会を開催!

東京都が主催し、Beyond Next Ventures株式会社が運営するBlockbuster T…

酸化反応を駆使した(-)-deoxoapodineの世界最短合成

第294回のスポットライトリサーチは、吉田慶 博士にお願いしました。今回取り上げる研究は有機…

Chem-Station Twitter

PAGE TOP