[スポンサーリンク]

化学者のつぶやき

わずか6工程でストリキニーネを全合成!!

[スポンサーリンク]

 

A synthesis of strychnine by a longest linear sequence of six steps
Martin, D. B. C.; Vanderwal, C. D. Chem. Sci. 2011, DOI: 10.1039/c1sc00009h

 

ストリキニーネ(Strychinine)はインドやスリランカ、東南アジアやオーストラリア北部などに成育する植物マチンの種子から得られるアルカロイドです。ミステリー好きにはお馴染みの猛毒成分(致死量0.1~0.03g)ですが、大変にユニークな化学構造をしていることでも有名です。分子量334という小柄な分子ながら、ご覧のとおりガチガチの縮環骨格の中に、いくつかの官能基および不斉点を密度高く持っています。このためかつては『知られる中で、もっとも小さく、もっとも複雑な化合物 (for its molecular size it is the most complex substance known)』 と言われていたほどです。

この構造的特性ゆえに合成化学者の興味を長く惹き続けてやまない化合物でもあり、これまでに10数例を数える全合成が達成されてきました。いずれの全合成でも十人十色に時代を反映した方法論が用いられています。勿論その合成はまったく一筋縄に行かないため、ストリキニーネの全合成を達成した化学者は、なべて「ワールドクラスの合成化学者」として認知されてきています。これら一連の仕事を通して眺めることで、「全合成」という学問の歴史と進歩を俯瞰することもでき、まさに『全合成の顔』たる化合物といえるでしょう。

既報の全合成のほとんどは20工程以上を必要としており、短いものでも十数工程の変換が必要です。しかしUCIrvineの若手化学者Christopher Vanderwalは、その記録を大幅に更新し、わずか6工程での全合成を達成しました。これほど複雑な分子にあっては十数工程でも極限値に近いと考えられてきましたが、今回そのイメージは完全にぶっ飛ばされてしまった感じです。

そんな極限まで突き詰められた合成ルートとはいかようなものか、以下見ていくことにしましょう。


この合成で重要な役割を果たしているのは、Zincke Saltと呼ばれる化合物です。これは2級アミン存在下に開環反応を起こし、以下のような高反応性ユニットを与えます。このZincke Salt自体は古くから存在が知られていますが、長らくその価値が発掘されないまま捨て置かれていた物質でもありました。

Strychinine_6step_3.gifVanderwalはこの化合物の有用性を見抜き、Zincke Saltを用いた変換を種々確立[1]、さらにはストリキニーネのStychnos骨格構築へと応用しました[2]。すなわち、図のように保護トリプタミンとZincke Saltを反応させて、引き続き[4+2]様反応を行うことでE環部を構築したのです。あとは別途合成した炭素フラグメントをくっつけ、Brook転位を活用した共役付加によって、典型前駆体たるWieland-Gumlichアルデヒドへと導いています。いずれもさっくり進行しているように見えますが、野心的な全合成の例に漏れず、やはりあちこちで苦労があったようです(どこで苦労していたかは、論文をご覧ください)。

Strychinine_6step_2.gifこれより短いルートはさすがにもう無理では?・・・ここまでできるのか!と思わざるを得ません。進歩に進歩を重ねた”有機合成の極み”が顕現した成果と言えそうです。ただただ、まったく凄まじい、と感じ入るばかりですね。

 

関連文献

[1] for example: Steinhardt, S. E.; Silverston, J. S.;  Vanderwal, C. D. J. Am. Chem. Soc. 2008, 130, 7560. DOI: 10.1021/ja8028125
[2] Martin, D. B. C.; Vanderwal, C. D. J. Am. Chem. Soc. 2009, 131, 3472. DOI: 10.1021/ja900640v

 

関連リンク

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 「フラストレイティド・ルイスペアが拓く革新的変換」ミュンスター大…
  2. エステルからエステルをつくる
  3. 鉄の新たな可能性!?鉄を用いたWacker型酸化
  4. 第四回ケムステVシンポ「持続可能社会をつくるバイオプラスチック」…
  5. 有機合成化学協会誌2021年4月号:共有結合・ゲル化剤・Hove…
  6. カゴ型シルセスキオキサン「ヤヌスキューブ」の合成と構造決定
  7. アジサイには毒がある
  8. シクロヘキサンの片面を全てフッ素化する

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. mRNAワクチン(メッセンジャーRNAワクチン)
  2. 高分子ってよく聞くけど、何がすごいの?
  3. 森謙治 Kenji Mori
  4. ビジネスが科学を待っている ー「バイオ」と「脱炭素」ー
  5. ファイトスルフォカイン (phytosulfokine)
  6. トリテルペノイドの「トリ」!?octanorcucurbitacin Bの全合成
  7. アマドリ転位 Amadori Rearrangement
  8. マテリアルズ・インフォマティクスに欠かせないデータ整理の進め方とは?
  9. エコエネルギー 家庭で競争
  10. インドール一覧

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年2月
 123456
78910111213
14151617181920
21222324252627
28  

注目情報

最新記事

【速報】2023年ノーベル化学賞は「量子ドットの発見と合成」へ!

2023年のノーベル化学賞は「量子ドットの発見と合成」の業績で、マサチューセッツ工科大学のMoung…

エキモフ, アレクセイ イワノビッチ Екимов, Алексей Иванович

エキモフ, アレクセイ イワノビッチ(Екимов, Алексей Иванович, Alexe…

ルイ・E. ・ブラス Louis E. Brus

ルイ・ユージーン・ブラス (Louis Eugene Brus, 1943年8月10日-, オハイオ…

モウンジ・バウェンディ Moungi G Bawendi

モウンジ・バウェンディ (Moungi G Bawendi 1961年3月15日 パリ生まれ)はアメ…

マテリアルズ・インフォマティクスにおける分子生成の基礎

開催日:2023/10/11 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

はやぶさ2が持ち帰った有機化合物

小惑星リュウグウから始原的な「塩(Salt)」と有機硫黄分子群を発見(9月18日JAMSTECプレス…

Let’s Make Wave , Make World. −マイクロ波で!プロセス革新ワークショップ −

<内容>マイクロ波のプロと次世代プロセスへの転換に向けた勘所を押さえ、未来に向けたイノベーシ…

ゲルマベンゼニルアニオンを用いた単原子ゲルマニウム導入反応の開発

第566回のスポットライトリサーチは、京都大学化学研究所 物質創成化学研究系 有機元素化学領域 (山…

韮山反射炉に行ってみた

韮山反射炉は1857年に完成した静岡県伊豆の国市にある国指定の史跡(史跡名勝記念物)で、2015年に…

超高圧合成、添加剤が選択的物質合成の決め手に -電池材料等への応用に期待-

第565回のスポットライトリサーチは、東京工業大学 科学技術創成研究院 フロンティア材料研究所 東・…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP