[スポンサーリンク]

B

ベンジル保護基 Benzyl (Bn) Protective Group

[スポンサーリンク]

概要

ベンジル(benzyl, Bn)基は、汎用性の高いアルコールおよびアミンの保護基である。

強塩基条件・加水分解条件・強酸性条件・求核剤・ヒドリド還元など、各種条件に耐える。最も安定な保護基の一つであるため、合成序盤で導入されることが多い。

基本文献

  • Czernecki, S.; Georgoulis, C.; Provelenghiou, C. Tetrahedron Lett. 1976, 17, 3535. doi:10.1016/S0040-4039(00)71351-7
  • Bn-trichloroimidate: (a) Iversen, T.; Bundlem, D. R. J. Chem. Soc. Chem. Commun. 1981, 1240. doi: 10.1039/C39810001240 (b) Wessel, H.-P.; Iversen, T.; Bundle, D. R.  J. Chem. Soc., Perkin Trans. 1, 1985, 2247. doi:10.1039/P19850002247
  • TMS-I deprotection: Jung, M. E.; Lyster, M. A. J. Org. Chem. 1977, 42, 3761. DOI: 10.1021/jo00443a033

反応機構

保護

アルコールに対しては、臭化ベンジル(BnBr)・水素化ナトリウム(NaH)・THFまたはDMF溶媒の組み合わせがもっともよく用いられる。Williamsonエーテル合成と同様の機構で進行する。

またベンジルトリクロロイミデート(BnOC(=NH)CCl3を用いることで、強ブレンステッド酸条件下(TfOH)にベンジルエーテルを得ることができる。塩基性条件下不安定な化合物に適用可能。

脱保護

脱保護は還元条件で行なうのが一般的である。最も典型的にはパラジウム/炭素触媒を用いる接触水素還元で脱保護が成される。脱保護速度は溶媒に依存する(下図)。またBirch還元や電解還元などの1電子還元条件も使用可能である。

 

TMS-I、BCl3などの「ルイス酸+求核剤」条件もよく用いられる。酸素親和性の高いルイス酸が活性化剤として働き、ベンジル位との求核置換反応を促進させる。

DDQなど、適切な酸化条件を選ぶことでも除去できる(下記反応例参照)。

反応例

保護

典型例[1]:丈夫なため合成の初期段階で導入されることが多い。

Dudley試薬によるベンジル化[2]:試薬は安定で取り扱い容易であり、中性条件で反応が進行する。

TriBOTを用いる酸性条件でのベンジル化[3]:3つのBn基全てが機能する。

酸化銀(Ag2O)でBnBrを活性化することで、ジオールのモノベンジル化が効率良く行える[4]。

DPT-BM試薬を用いるベンジル化[5]:ほぼ中性条件でかつ室温で行える特長がある。

スズアセタール法による選択的ベンジル保護[6]

脱保護

O-Bn共存下におけるN-Bn基の選択的脱保護[7]:イミンへの酸化を経由する。

アンモニア源はPd/C-H2条件でのベンジル除去に対して阻害剤として機能する[8]。

トリクロロ酢酸をダミー基質として加えることで、接触還元されてしまうTroc基を保ったままにBn除去が行える[9]。

リチウム―di-tert-butylbiphenyl(LiDBB)によるBn基の除去[10]

BCl3条件を用いる脱保護の例[11]

BCl3条件で発生するベンジルカチオンが引き起こす副反応を防ぐため、ペンタメチルベンゼンを捕捉剤として加える条件が開発されている[12]。下記はYatakemycinの全合成への応用例[13]。

SnCl4条件を用いる選択的脱保護の例[14]

RuO4酸化に伏してベンゾイル基に変換することで、ヒドリド還元条件もしくは加水分解条件でBn基を除去できるようになる[15]。

下記条件では、アルコール隣接位のBnだけを除去できる[16]。

DDQによって酸化的除去も可能。以下は(+)-Laurencin合成への応用例[17]。

2-ナフチルメチル(NAP)基[18]は、酸化条件でベンジル基よりも容易に切断できる。下記はCiguatoxin CTX3Cの全合成において、Bn基からNAP基に変更することで顕著な収率改善を見せた例である[19]。

テトラセノマイシン類の全合成[20]:重ベンジル基が酸化条件に強い保護基として活用されている。三級アルコール上のBn基はDDQ処理で外れやすい[21]ため、この工夫が必要となっている。

実験手順

 

実験のテクニック・コツ

  • Bu4NI(TBAI)やNaIを触媒量加えておくと、保護反応が加速される。BnClやBnBrが系中で高反応性のBnIに変換されるためである。
  • BnBrは催涙性物質なので、ドラフト中で取り扱うことが望ましい。
  • クエンチ時には水を加えるのではなく、炭酸カリウム-メタノールを加えてしばらく攪拌すると、催涙性のBnBrがうまくつぶれてくれる。後処理が快適になるのでオススメ。
  • 外れにくいBn基はしばしば水素添加によってシクロヘキシルメチル基に変換されてしまう。
  • DMF溶媒を使うと、展開時にスポットがテーリングしてTLCが見づらくなる。TLCプレートを数分真空引きしてから展開すると見やすくなる。
  • 抽出操作の際は、低極性の溶媒(Et2Oやhexane-EtOAc混合溶媒系)で抽出し、水洗いするとDMFが除きやすい。
  • Pd/C触媒は試薬・溶媒を加えるときにしばしば発火するので注意。フラスコをアルゴン置換してから加えると発火しづらくなる。
  • 反応が行きづらいからといって途中でPd/C触媒を足すのは厳禁。高確率で発火する。一旦ろ過して仕込み直す。

参考文献

  1. Oguri, H.; Hishiyama, S.; Oishi, T.; Hirama, M. Synlett 1995, 1252. DOI: 10.1055/s-1995-5259
  2. (a) Poon, K. W. C.; Dudley, G. B. J. Org. Chem. 2006, 71, 3923. DOI: 10.1021/jo0602773 (b) Poon, K. W. C.; House, S. E.; Dudley, G. B. Synlett 2005, 3142. DOI: 10.1055/s-2005-921898
  3. Yamada, K.; Fujita, H.; Kunishima, M. Org. Lett. 2012, 14, 5026. DOI: 10.1021/ol302222p
  4. Bouzide, A.; Sauvé, G. Tetrahedron Lett. 1997, 38, 5945. DOI: 10.1016/S0040-4039(97)01328-2
  5. Yamada, K.; Tsukada, Y.; Karuo, Y.; Kitamura, M.; Kunishima, M.  Chem. Eur. J. 2014, 20, 12274. doi:10.1002/chem.201403158
  6. (a) Cruzado, C.; Bernabe, M.; Martin-Lomas, M. J. Org. Chem. 1989, 54, 465. DOI: 10.1021/jo00263a038 (b) Simas, A. B. C.; Pais, K. C.; da Silva, A. A. T. J. Org. Chem. 2003, 68, 5426. DOI: 10.1021/jo026794c (c) Boons, G.-J.; Castle, G. H.; Clase, J. A.; Grice, P.; Ley, S. V.; Pinel, C. Synlett 1993, 913. DOI: 10.1055/s-1993-22650
  7. Kroutil, J.; Tmka, T.; Cemy, M. Synthesis 2004, 446. DOI: 10.1055/s-2004-815937
  8. (a) Czech, B. P.; Bartsch, R. A. J. Org. Chem. 1984, 49, 4076. DOI: 10.1021/jo00195a045 (b) Sajiki, H. Tetrahedron Lett. 1995, 36, 3465. doi:10.1016/0040-4039(95)00527-J (c) Sajiki, H.; Hirota, K. Tetrahedron 1998, 54, 13981. doi:10.1016/S0040-4020(98)00882-5
  9. Boger, D. L.; Kim, S. H.; Mori, Y.; Weng, J.-H.; Rogel, O.; Castle, S. L.: McAtee, J. J. J. Am. Chem. Soc. 2001, 123, 1862.  DOI: 10.1021/ja003835i
  10. Shimshock, S. J.; Waltermire, R. E.; DeShong, P. J. Am. Chem. Soc. 1991, 113, 8791. DOI: 10.1021/ja00023a029
  11. Williams, D. R.; Brown, D. L.; Benbow, J. W. J. Am. Chem. Soc. 1989, 111, 1923. DOI: 10.1021/ja00187a081
  12. (a) Yoshino, H.; Tsuchiya, Y.; Saito, I.; Tsujii, M. Chem. Pharm. Bull. 1987, 35, 3438. doi:10.1248/cpb.35.3438 (b) Yoshino, H.; Tsujii, M.; Kodama, M.; Komeda, K.; Niikawa, N.; Tanase, T.; Asakawa, N.; Nose, K.; Yamatsu, K. Chem. Pharm. Bull. 1990, 38, 1735. doi:10.1248/cpb.38.1735 (c) Okano, K.; Okuyama, K.-i.; Fukuyama, T.; Tokuyama, H. Synlett 2008, 1977. DOI: 10.1055/s-2008-1077980
  13. (a) Okano, K.; Tokuyama, H.; Fukuyama, T. J. Am. Chem. Soc. 2006, 128, 7136. DOI: 10.1021/ja0619455 (b) Okano, K.; Tokuyama, H.; Fukuyama, T. Chem. Asian J. 2008, 3, 296. doi:10.1002/asia.200700282
  14. Hori, H.; Nishida, Y.; Ohrui, H.; Meguro, H. J. Org. Chem. 1989, 54, 1346. DOI: 10.1021/jo00267a022
  15. (a) Schuda, P. F.; Cichowicz, M. B.; Heimann, M. R. Tetrahedron Lett. 1983, 24, 3829. doi:10.1016/S0040-4039(00)94286-2 (b) Ritter, T.; Zarotti, P.; Carreira, E. M. Org. Lett. 2004, 6, 4371. DOI: 10.1021/ol0480832
  16. (a) Madsen, J.; Bols, M. Angew. Chem. Int. Ed. 1998, 37, 3177. doi:10.1002/(SICI)1521-3773(19981204)37:22<3177::AID-ANIE3177>3.0.CO;2-A (b) Madsen, J.; Viuf, C.; Bols, M. Chem. Eur. J. 2000, 6, 1140. doi: 10.1002/(SICI)1521-3765(20000403)6:7<1140::AID-CHEM1140>3.0.CO;2-6
  17. Baek, S.: Jo, H.; Kim, H.; Kim, H.; Kim, S.; Kim, D. Org. Lett. 2005, 7, 75. DOI: 10.1021/ol047877d
  18. (a) Gaunt, M. J.; Yu, J.; Spencer, J. B. J. Org. Chem. 1998, 63, 4172. DOI: 10.1021/jo980823v (b) Wright, J. A.; Yu, J.; Spencer, J. B. Tetrahedron Lett. 2001, 42, 4033. doi: 10.1016/S0040-4039(01)00563-9 (c) Xia, J.; Abbas, S. A.; Locke, R. D.; Piskorz, C. F.; Alderfer, J. L.; Matta, K. L. Tetrahedron Lett. 2000, 41, 169. doi:10.1016/S0040-4039(99)02046-8
  19. Inoue, M.; Uehara, H.; Maruyama, M.; Hirama, M. Org. Lett. 2002, 4, 4551. DOI: 10.1021/ol027105m
  20. Sato, S.; Sakata, K.; Hashimoto, Y.; Takikawa, H.; Suzuki, K. Angew. Chem. Int. Ed. 2017, 56, 12608. DOI: 10.1002/anie.201707099
  21. (a) Oikawa, Y.; Horita, K.; Yonemitsu, O. Tetrahedron Lett. 1985, 26, 1541. doi:10.1016/S0040-4039(00)84871-6 (b) Oikawa, Y.; Tanaka, T.; Yonemitsu, O. Tetrahedron Lett. 1986, 27, 3647. doi:10.1016/S0040-4039(00)98547-2

関連反応

関連書籍

外部リンク

関連記事

  1. フェティゾン試薬 Fetizon’s Reagent…
  2. 向山酸化還元縮合反応 Mukaiyama Redox Conde…
  3. NHPI触媒によるC-H酸化 C-H Oxidation wit…
  4. ショッテン・バウマン反応 Schotten-Baumann Re…
  5. クリンコヴィッチ反応 Kulinkovich Reaction
  6. カラッシュ・ソスノフスキ-酸化 Kharasch-Sosnovs…
  7. ホフマン・レフラー・フレイターク反応 Hofmann-Loffl…
  8. マンダー試薬 Mander’s Reagent

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. アセトアミノフェン Acetaminophen
  2. かぶれたTシャツ、原因は塩化ジデシルジメチルアンモニウム
  3. 第13回 次世代につながる新たな「知」を創造するー相田卓三教授
  4. トーマス・レクタ Thomas Lectka
  5. 第156回―「異種金属―有機構造体の創製」Stéphane Baudron教授
  6. 世界で初めて一重項分裂光反応の静水圧制御を達成
  7. 高分子学会年次大会 「合成するぞ!」Tシャツキャンペーン
  8. 第4回ICReDD国際シンポジウム開催のお知らせ
  9. 徹底比較 特許と論文の違い ~その他編~
  10. 日本化学会 第103春季年会 付設展示会ケムステキャンペーン Part3

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

(+)-Pleiocarpamineの全合成と新規酸化的カップリング反応を基盤とした(+)-voacalgine Aおよび(+)-bipleiophyllineの全合成

第564回のスポットライトリサーチは、東北大学大学院薬学研究科分子薬科学専攻・医薬製造化学分野(徳山…

ResearchGateに対するACSとElsevierによる訴訟で和解が成立

2023年9月15日、米国化学会(ACS)とElsevier社がResearchGateに対して起こ…

マテリアルズ・インフォマティクスの基礎知識とよくある誤解

開催日:2023/10/04 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

理研、放射性同位体アスタチンの大量製造法を開発

理化学研究所 仁科加速器科学研究センター 核化学研究開発室、金属技研株式会社 技術開発本部 エン…

マイクロ波プロセスを知る・話す・考える ー新たな展望と可能性を探るパネルディスカッションー

<内容>参加いただくみなさまとご一緒にマイクロ波プロセスの新たな展望と可能性について探る、パ…

SFTSのはなし ~マダニとその最新情報 後編~

注意1:この記事は人によってはやや苦手と思われる画像を載せております ご注意ください注意2:厚生…

様々な化学分野におけるAIの活用

ENEOS株式会社と株式会社Preferred Networks(PFN)は、2023年1月に石油精…

第8回 学生のためのセミナー(企業の若手研究者との交流会)

有機合成化学協会が学生会員の皆さんに贈る,交流の場有機化学を武器に活躍する,本当の若手研究者を知ろう…

UBEの新TVCM『ストーリーを変える、ケミストリー』篇、放映開始

UBE株式会社は、2023年9月1日より、新TVCM『ストーリーを変える、ケミストリー』篇を関東エリ…

有機合成化学協会誌2023年9月号:大村天然物・ストロファステロール・免疫調節性分子・ニッケル触媒・カチオン性芳香族化合物

有機合成化学協会が発行する有機合成化学協会誌、2023年9月号がオンライン公開されています。…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP