[スポンサーリンク]

B

ベンジル保護基 Benzyl (Bn) Protective Group

[スポンサーリンク]

概要

ベンジル(benzyl, Bn)基は、汎用性の高いアルコールおよびアミンの保護基である。

強塩基条件・加水分解条件・強酸性条件・求核剤・ヒドリド還元など、各種条件に耐える。最も安定な保護基の一つであるため、合成序盤で導入されることが多い。

基本文献

  • Czernecki, S.; Georgoulis, C.; Provelenghiou, C. Tetrahedron Lett. 1976, 17, 3535. doi:10.1016/S0040-4039(00)71351-7
  • Bn-trichloroimidate: (a) Iversen, T.; Bundlem, D. R. J. Chem. Soc. Chem. Commun. 1981, 1240. doi: 10.1039/C39810001240 (b) Wessel, H.-P.; Iversen, T.; Bundle, D. R.  J. Chem. Soc., Perkin Trans. 1, 1985, 2247. doi:10.1039/P19850002247
  • TMS-I deprotection: Jung, M. E.; Lyster, M. A. J. Org. Chem. 1977, 42, 3761. DOI: 10.1021/jo00443a033

反応機構

保護

アルコールに対しては、臭化ベンジル(BnBr)・水素化ナトリウム(NaH)・THFまたはDMF溶媒の組み合わせがもっともよく用いられる。Williamsonエーテル合成と同様の機構で進行する。

またベンジルトリクロロイミデート(BnOC(=NH)CCl3を用いることで、強ブレンステッド酸条件下(TfOH)にベンジルエーテルを得ることができる。塩基性条件下不安定な化合物に適用可能。

脱保護

脱保護は還元条件で行なうのが一般的である。最も典型的にはパラジウム/炭素触媒を用いる接触水素還元で脱保護が成される。脱保護速度は溶媒に依存する(下図)。またBirch還元や電解還元などの1電子還元条件も使用可能である。

 

TMS-I、BCl3などの「ルイス酸+求核剤」条件もよく用いられる。酸素親和性の高いルイス酸が活性化剤として働き、ベンジル位との求核置換反応を促進させる。

DDQなど、適切な酸化条件を選ぶことでも除去できる(下記反応例参照)。

反応例

保護

典型例[1]:丈夫なため合成の初期段階で導入されることが多い。

Dudley試薬によるベンジル化[2]:試薬は安定で取り扱い容易であり、中性条件で反応が進行する。

TriBOTを用いる酸性条件でのベンジル化[3]:3つのBn基全てが機能する。

酸化銀(Ag2O)でBnBrを活性化することで、ジオールのモノベンジル化が効率良く行える[4]。

DPT-BM試薬を用いるベンジル化[5]:ほぼ中性条件でかつ室温で行える特長がある。

スズアセタール法による選択的ベンジル保護[6]

脱保護

O-Bn共存下におけるN-Bn基の選択的脱保護[7]:イミンへの酸化を経由する。

アンモニア源はPd/C-H2条件でのベンジル除去に対して阻害剤として機能する[8]。

トリクロロ酢酸をダミー基質として加えることで、接触還元されてしまうTroc基を保ったままにBn除去が行える[9]。

リチウム―di-tert-butylbiphenyl(LiDBB)によるBn基の除去[10]

BCl3条件を用いる脱保護の例[11]

BCl3条件で発生するベンジルカチオンが引き起こす副反応を防ぐため、ペンタメチルベンゼンを捕捉剤として加える条件が開発されている[12]。下記はYatakemycinの全合成への応用例[13]。

SnCl4条件を用いる選択的脱保護の例[14]

RuO4酸化に伏してベンゾイル基に変換することで、ヒドリド還元条件もしくは加水分解条件でBn基を除去できるようになる[15]。

下記条件では、アルコール隣接位のBnだけを除去できる[16]。

DDQによって酸化的除去も可能。以下は(+)-Laurencin合成への応用例[17]。

2-ナフチルメチル(NAP)基[18]は、酸化条件でベンジル基よりも容易に切断できる。下記はCiguatoxin CTX3Cの全合成において、Bn基からNAP基に変更することで顕著な収率改善を見せた例である[19]。

テトラセノマイシン類の全合成[20]:重ベンジル基が酸化条件に強い保護基として活用されている。三級アルコール上のBn基はDDQ処理で外れやすい[21]ため、この工夫が必要となっている。

実験手順

 

実験のテクニック・コツ

  • Bu4NI(TBAI)やNaIを触媒量加えておくと、保護反応が加速される。BnClやBnBrが系中で高反応性のBnIに変換されるためである。
  • BnBrは催涙性物質なので、ドラフト中で取り扱うことが望ましい。
  • クエンチ時には水を加えるのではなく、炭酸カリウム-メタノールを加えてしばらく攪拌すると、催涙性のBnBrがうまくつぶれてくれる。後処理が快適になるのでオススメ。
  • 外れにくいBn基はしばしば水素添加によってシクロヘキシルメチル基に変換されてしまう。
  • DMF溶媒を使うと、展開時にスポットがテーリングしてTLCが見づらくなる。TLCプレートを数分真空引きしてから展開すると見やすくなる。
  • 抽出操作の際は、低極性の溶媒(Et2Oやhexane-EtOAc混合溶媒系)で抽出し、水洗いするとDMFが除きやすい。
  • Pd/C触媒は試薬・溶媒を加えるときにしばしば発火するので注意。フラスコをアルゴン置換してから加えると発火しづらくなる。
  • 反応が行きづらいからといって途中でPd/C触媒を足すのは厳禁。高確率で発火する。一旦ろ過して仕込み直す。

参考文献

  1. Oguri, H.; Hishiyama, S.; Oishi, T.; Hirama, M. Synlett 1995, 1252. DOI: 10.1055/s-1995-5259
  2. (a) Poon, K. W. C.; Dudley, G. B. J. Org. Chem. 2006, 71, 3923. DOI: 10.1021/jo0602773 (b) Poon, K. W. C.; House, S. E.; Dudley, G. B. Synlett 2005, 3142. DOI: 10.1055/s-2005-921898
  3. Yamada, K.; Fujita, H.; Kunishima, M. Org. Lett. 2012, 14, 5026. DOI: 10.1021/ol302222p
  4. Bouzide, A.; Sauvé, G. Tetrahedron Lett. 1997, 38, 5945. DOI: 10.1016/S0040-4039(97)01328-2
  5. Yamada, K.; Tsukada, Y.; Karuo, Y.; Kitamura, M.; Kunishima, M.  Chem. Eur. J. 2014, 20, 12274. doi:10.1002/chem.201403158
  6. (a) Cruzado, C.; Bernabe, M.; Martin-Lomas, M. J. Org. Chem. 1989, 54, 465. DOI: 10.1021/jo00263a038 (b) Simas, A. B. C.; Pais, K. C.; da Silva, A. A. T. J. Org. Chem. 2003, 68, 5426. DOI: 10.1021/jo026794c (c) Boons, G.-J.; Castle, G. H.; Clase, J. A.; Grice, P.; Ley, S. V.; Pinel, C. Synlett 1993, 913. DOI: 10.1055/s-1993-22650
  7. Kroutil, J.; Tmka, T.; Cemy, M. Synthesis 2004, 446. DOI: 10.1055/s-2004-815937
  8. (a) Czech, B. P.; Bartsch, R. A. J. Org. Chem. 1984, 49, 4076. DOI: 10.1021/jo00195a045 (b) Sajiki, H. Tetrahedron Lett. 1995, 36, 3465. doi:10.1016/0040-4039(95)00527-J (c) Sajiki, H.; Hirota, K. Tetrahedron 1998, 54, 13981. doi:10.1016/S0040-4020(98)00882-5
  9. Boger, D. L.; Kim, S. H.; Mori, Y.; Weng, J.-H.; Rogel, O.; Castle, S. L.: McAtee, J. J. J. Am. Chem. Soc. 2001, 123, 1862.  DOI: 10.1021/ja003835i
  10. Shimshock, S. J.; Waltermire, R. E.; DeShong, P. J. Am. Chem. Soc. 1991, 113, 8791. DOI: 10.1021/ja00023a029
  11. Williams, D. R.; Brown, D. L.; Benbow, J. W. J. Am. Chem. Soc. 1989, 111, 1923. DOI: 10.1021/ja00187a081
  12. (a) Yoshino, H.; Tsuchiya, Y.; Saito, I.; Tsujii, M. Chem. Pharm. Bull. 1987, 35, 3438. doi:10.1248/cpb.35.3438 (b) Yoshino, H.; Tsujii, M.; Kodama, M.; Komeda, K.; Niikawa, N.; Tanase, T.; Asakawa, N.; Nose, K.; Yamatsu, K. Chem. Pharm. Bull. 1990, 38, 1735. doi:10.1248/cpb.38.1735 (c) Okano, K.; Okuyama, K.-i.; Fukuyama, T.; Tokuyama, H. Synlett 2008, 1977. DOI: 10.1055/s-2008-1077980
  13. (a) Okano, K.; Tokuyama, H.; Fukuyama, T. J. Am. Chem. Soc. 2006, 128, 7136. DOI: 10.1021/ja0619455 (b) Okano, K.; Tokuyama, H.; Fukuyama, T. Chem. Asian J. 2008, 3, 296. doi:10.1002/asia.200700282
  14. Hori, H.; Nishida, Y.; Ohrui, H.; Meguro, H. J. Org. Chem. 1989, 54, 1346. DOI: 10.1021/jo00267a022
  15. (a) Schuda, P. F.; Cichowicz, M. B.; Heimann, M. R. Tetrahedron Lett. 1983, 24, 3829. doi:10.1016/S0040-4039(00)94286-2 (b) Ritter, T.; Zarotti, P.; Carreira, E. M. Org. Lett. 2004, 6, 4371. DOI: 10.1021/ol0480832
  16. (a) Madsen, J.; Bols, M. Angew. Chem. Int. Ed. 1998, 37, 3177. doi:10.1002/(SICI)1521-3773(19981204)37:22<3177::AID-ANIE3177>3.0.CO;2-A (b) Madsen, J.; Viuf, C.; Bols, M. Chem. Eur. J. 2000, 6, 1140. doi: 10.1002/(SICI)1521-3765(20000403)6:7<1140::AID-CHEM1140>3.0.CO;2-6
  17. Baek, S.: Jo, H.; Kim, H.; Kim, H.; Kim, S.; Kim, D. Org. Lett. 2005, 7, 75. DOI: 10.1021/ol047877d
  18. (a) Gaunt, M. J.; Yu, J.; Spencer, J. B. J. Org. Chem. 1998, 63, 4172. DOI: 10.1021/jo980823v (b) Wright, J. A.; Yu, J.; Spencer, J. B. Tetrahedron Lett. 2001, 42, 4033. doi: 10.1016/S0040-4039(01)00563-9 (c) Xia, J.; Abbas, S. A.; Locke, R. D.; Piskorz, C. F.; Alderfer, J. L.; Matta, K. L. Tetrahedron Lett. 2000, 41, 169. doi:10.1016/S0040-4039(99)02046-8
  19. Inoue, M.; Uehara, H.; Maruyama, M.; Hirama, M. Org. Lett. 2002, 4, 4551. DOI: 10.1021/ol027105m
  20. Sato, S.; Sakata, K.; Hashimoto, Y.; Takikawa, H.; Suzuki, K. Angew. Chem. Int. Ed. 2017, 56, 12608. DOI: 10.1002/anie.201707099
  21. (a) Oikawa, Y.; Horita, K.; Yonemitsu, O. Tetrahedron Lett. 1985, 26, 1541. doi:10.1016/S0040-4039(00)84871-6 (b) Oikawa, Y.; Tanaka, T.; Yonemitsu, O. Tetrahedron Lett. 1986, 27, 3647. doi:10.1016/S0040-4039(00)98547-2

関連反応

関連書籍

外部リンク

The following two tabs change content below.
Hiro

Hiro

Hiro

最新記事 by Hiro (全て見る)

関連記事

  1. 触媒的C-H酸化反応 Catalytic C-H Oxidati…
  2. アイルランド・クライゼン転位 Ireland-Claisen R…
  3. アシロイン縮合 Acyloin Condensation
  4. シュミット グリコシル化反応 Schmidt Glycosyla…
  5. パーコウ反応 Perkow Reaction
  6. デ-マヨ反応 de Mayo Reaction
  7. マイヤース・斉藤環化 Myers-Saito Cyclizati…
  8. ダフ反応 Duff Reaction

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 北エステル化反応 Kita Esterification
  2. 薬の副作用2477症例、HP公開始まる
  3. 有機ELディスプレイ材料市場について調査結果を発表
  4. 含『鉛』芳香族化合物ジリチオプルンボールの合成に成功!①
  5. Imaging MS イメージングマス
  6. ハネシアン・ヒュラー反応 Hanessian-Hullar Reaction
  7. 飽和C–H結合を直接脱離基に変える方法
  8. ダンハイザー環形成反応 Danheiser Annulation
  9. 脈動がほとんどない小型精密ポンプ:スムーズフローポンプQシリーズ
  10. ヒュー・デーヴィス Huw M. L. Davies

関連商品

注目情報

注目情報

最新記事

ヒドロゲルの新たな力学強度・温度応答性制御法

第230回のスポットライトリサーチは、東京農工大学大学院工学府(村岡研究室)・石田敦也さんにお願い致…

光誘導アシルラジカルのミニスキ型ヒドロキシアルキル化反応

可視光照射条件下でのアジン類のミニスキ型ヒドロキシアルキル化反応が開発された。官能基許容性が高いため…

イオン交換が分子間電荷移動を駆動する協奏的現象の発見

第229回のスポットライトリサーチは、東京大学大学院 新領域創成科学研究科(竹谷・岡本研究室)・山下…

化学産業における規格の意義

普段、実験で使う溶媒には、試薬特級や試薬一級といった”グレード”が記載されている。一般的には、特級の…

特許資産規模ランキング2019、トップ3は富士フイルム、三菱ケミカル、住友化学

株式会社パテント・リザルトは、独自に分類した「化学」業界の企業を対象に、各社が保有する特許資産を質と…

TQ: TriQuinoline

第228回のスポットライトリサーチは、足立 慎弥さんにお願い致しました。シンプルながらこれま…

Chem-Station Twitter

PAGE TOP