[スポンサーリンク]

B

ベンジル保護基 Benzyl (Bn) Protective Group

[スポンサーリンク]

概要

ベンジル(benzyl, Bn)基は、汎用性の高いアルコールおよびアミンの保護基である。

強塩基条件・加水分解条件・強酸性条件・求核剤・ヒドリド還元など、各種条件に耐える。最も安定な保護基の一つであるため、合成序盤で導入されることが多い。

基本文献

  • Czernecki, S.; Georgoulis, C.; Provelenghiou, C. Tetrahedron Lett. 1976, 17, 3535. doi:10.1016/S0040-4039(00)71351-7
  • Bn-trichloroimidate: (a) Iversen, T.; Bundlem, D. R. J. Chem. Soc. Chem. Commun. 1981, 1240. doi: 10.1039/C39810001240 (b) Wessel, H.-P.; Iversen, T.; Bundle, D. R.  J. Chem. Soc., Perkin Trans. 1, 1985, 2247. doi:10.1039/P19850002247
  • TMS-I deprotection: Jung, M. E.; Lyster, M. A. J. Org. Chem. 1977, 42, 3761. DOI: 10.1021/jo00443a033

反応機構

保護

アルコールに対しては、臭化ベンジル(BnBr)・水素化ナトリウム(NaH)・THFまたはDMF溶媒の組み合わせがもっともよく用いられる。Williamsonエーテル合成と同様の機構で進行する。

またベンジルトリクロロイミデート(BnOC(=NH)CCl3を用いることで、強ブレンステッド酸条件下(TfOH)にベンジルエーテルを得ることができる。塩基性条件下不安定な化合物に適用可能。

脱保護

脱保護は還元条件で行なうのが一般的である。最も典型的にはパラジウム/炭素触媒を用いる接触水素還元で脱保護が成される。脱保護速度は溶媒に依存する(下図)。またBirch還元や電解還元などの1電子還元条件も使用可能である。

 

TMS-I、BCl3などの「ルイス酸+求核剤」条件もよく用いられる。酸素親和性の高いルイス酸が活性化剤として働き、ベンジル位との求核置換反応を促進させる。

DDQなど、適切な酸化条件を選ぶことでも除去できる(下記反応例参照)。

反応例

保護

典型例[1]:丈夫なため合成の初期段階で導入されることが多い。

Dudley試薬によるベンジル化[2]:試薬は安定で取り扱い容易であり、中性条件で反応が進行する。

TriBOTを用いる酸性条件でのベンジル化[3]:3つのBn基全てが機能する。

酸化銀(Ag2O)でBnBrを活性化することで、ジオールのモノベンジル化が効率良く行える[4]。

DPT-BM試薬を用いるベンジル化[5]:ほぼ中性条件でかつ室温で行える特長がある。

スズアセタール法による選択的ベンジル保護[6]

脱保護

O-Bn共存下におけるN-Bn基の選択的脱保護[7]:イミンへの酸化を経由する。

アンモニア源はPd/C-H2条件でのベンジル除去に対して阻害剤として機能する[8]。

トリクロロ酢酸をダミー基質として加えることで、接触還元されてしまうTroc基を保ったままにBn除去が行える[9]。

リチウム―di-tert-butylbiphenyl(LiDBB)によるBn基の除去[10]

BCl3条件を用いる脱保護の例[11]

BCl3条件で発生するベンジルカチオンが引き起こす副反応を防ぐため、ペンタメチルベンゼンを捕捉剤として加える条件が開発されている[12]。下記はYatakemycinの全合成への応用例[13]。

SnCl4条件を用いる選択的脱保護の例[14]

RuO4酸化に伏してベンゾイル基に変換することで、ヒドリド還元条件もしくは加水分解条件でBn基を除去できるようになる[15]。

下記条件では、アルコール隣接位のBnだけを除去できる[16]。

DDQによって酸化的除去も可能。以下は(+)-Laurencin合成への応用例[17]。

2-ナフチルメチル(NAP)基[18]は、酸化条件でベンジル基よりも容易に切断できる。下記はCiguatoxin CTX3Cの全合成において、Bn基からNAP基に変更することで顕著な収率改善を見せた例である[19]。

テトラセノマイシン類の全合成[20]:重ベンジル基が酸化条件に強い保護基として活用されている。三級アルコール上のBn基はDDQ処理で外れやすい[21]ため、この工夫が必要となっている。

実験手順

 

実験のテクニック・コツ

  • Bu4NI(TBAI)やNaIを触媒量加えておくと、保護反応が加速される。BnClやBnBrが系中で高反応性のBnIに変換されるためである。
  • BnBrは催涙性物質なので、ドラフト中で取り扱うことが望ましい。
  • クエンチ時には水を加えるのではなく、炭酸カリウム-メタノールを加えてしばらく攪拌すると、催涙性のBnBrがうまくつぶれてくれる。後処理が快適になるのでオススメ。
  • 外れにくいBn基はしばしば水素添加によってシクロヘキシルメチル基に変換されてしまう。
  • DMF溶媒を使うと、展開時にスポットがテーリングしてTLCが見づらくなる。TLCプレートを数分真空引きしてから展開すると見やすくなる。
  • 抽出操作の際は、低極性の溶媒(Et2Oやhexane-EtOAc混合溶媒系)で抽出し、水洗いするとDMFが除きやすい。
  • Pd/C触媒は試薬・溶媒を加えるときにしばしば発火するので注意。フラスコをアルゴン置換してから加えると発火しづらくなる。
  • 反応が行きづらいからといって途中でPd/C触媒を足すのは厳禁。高確率で発火する。一旦ろ過して仕込み直す。

参考文献

  1. Oguri, H.; Hishiyama, S.; Oishi, T.; Hirama, M. Synlett 1995, 1252. DOI: 10.1055/s-1995-5259
  2. (a) Poon, K. W. C.; Dudley, G. B. J. Org. Chem. 2006, 71, 3923. DOI: 10.1021/jo0602773 (b) Poon, K. W. C.; House, S. E.; Dudley, G. B. Synlett 2005, 3142. DOI: 10.1055/s-2005-921898
  3. Yamada, K.; Fujita, H.; Kunishima, M. Org. Lett. 2012, 14, 5026. DOI: 10.1021/ol302222p
  4. Bouzide, A.; Sauvé, G. Tetrahedron Lett. 1997, 38, 5945. DOI: 10.1016/S0040-4039(97)01328-2
  5. Yamada, K.; Tsukada, Y.; Karuo, Y.; Kitamura, M.; Kunishima, M.  Chem. Eur. J. 2014, 20, 12274. doi:10.1002/chem.201403158
  6. (a) Cruzado, C.; Bernabe, M.; Martin-Lomas, M. J. Org. Chem. 1989, 54, 465. DOI: 10.1021/jo00263a038 (b) Simas, A. B. C.; Pais, K. C.; da Silva, A. A. T. J. Org. Chem. 2003, 68, 5426. DOI: 10.1021/jo026794c (c) Boons, G.-J.; Castle, G. H.; Clase, J. A.; Grice, P.; Ley, S. V.; Pinel, C. Synlett 1993, 913. DOI: 10.1055/s-1993-22650
  7. Kroutil, J.; Tmka, T.; Cemy, M. Synthesis 2004, 446. DOI: 10.1055/s-2004-815937
  8. (a) Czech, B. P.; Bartsch, R. A. J. Org. Chem. 1984, 49, 4076. DOI: 10.1021/jo00195a045 (b) Sajiki, H. Tetrahedron Lett. 1995, 36, 3465. doi:10.1016/0040-4039(95)00527-J (c) Sajiki, H.; Hirota, K. Tetrahedron 1998, 54, 13981. doi:10.1016/S0040-4020(98)00882-5
  9. Boger, D. L.; Kim, S. H.; Mori, Y.; Weng, J.-H.; Rogel, O.; Castle, S. L.: McAtee, J. J. J. Am. Chem. Soc. 2001, 123, 1862.  DOI: 10.1021/ja003835i
  10. Shimshock, S. J.; Waltermire, R. E.; DeShong, P. J. Am. Chem. Soc. 1991, 113, 8791. DOI: 10.1021/ja00023a029
  11. Williams, D. R.; Brown, D. L.; Benbow, J. W. J. Am. Chem. Soc. 1989, 111, 1923. DOI: 10.1021/ja00187a081
  12. (a) Yoshino, H.; Tsuchiya, Y.; Saito, I.; Tsujii, M. Chem. Pharm. Bull. 1987, 35, 3438. doi:10.1248/cpb.35.3438 (b) Yoshino, H.; Tsujii, M.; Kodama, M.; Komeda, K.; Niikawa, N.; Tanase, T.; Asakawa, N.; Nose, K.; Yamatsu, K. Chem. Pharm. Bull. 1990, 38, 1735. doi:10.1248/cpb.38.1735 (c) Okano, K.; Okuyama, K.-i.; Fukuyama, T.; Tokuyama, H. Synlett 2008, 1977. DOI: 10.1055/s-2008-1077980
  13. (a) Okano, K.; Tokuyama, H.; Fukuyama, T. J. Am. Chem. Soc. 2006, 128, 7136. DOI: 10.1021/ja0619455 (b) Okano, K.; Tokuyama, H.; Fukuyama, T. Chem. Asian J. 2008, 3, 296. doi:10.1002/asia.200700282
  14. Hori, H.; Nishida, Y.; Ohrui, H.; Meguro, H. J. Org. Chem. 1989, 54, 1346. DOI: 10.1021/jo00267a022
  15. (a) Schuda, P. F.; Cichowicz, M. B.; Heimann, M. R. Tetrahedron Lett. 1983, 24, 3829. doi:10.1016/S0040-4039(00)94286-2 (b) Ritter, T.; Zarotti, P.; Carreira, E. M. Org. Lett. 2004, 6, 4371. DOI: 10.1021/ol0480832
  16. (a) Madsen, J.; Bols, M. Angew. Chem. Int. Ed. 1998, 37, 3177. doi:10.1002/(SICI)1521-3773(19981204)37:22<3177::AID-ANIE3177>3.0.CO;2-A (b) Madsen, J.; Viuf, C.; Bols, M. Chem. Eur. J. 2000, 6, 1140. doi: 10.1002/(SICI)1521-3765(20000403)6:7<1140::AID-CHEM1140>3.0.CO;2-6
  17. Baek, S.: Jo, H.; Kim, H.; Kim, H.; Kim, S.; Kim, D. Org. Lett. 2005, 7, 75. DOI: 10.1021/ol047877d
  18. (a) Gaunt, M. J.; Yu, J.; Spencer, J. B. J. Org. Chem. 1998, 63, 4172. DOI: 10.1021/jo980823v (b) Wright, J. A.; Yu, J.; Spencer, J. B. Tetrahedron Lett. 2001, 42, 4033. doi: 10.1016/S0040-4039(01)00563-9 (c) Xia, J.; Abbas, S. A.; Locke, R. D.; Piskorz, C. F.; Alderfer, J. L.; Matta, K. L. Tetrahedron Lett. 2000, 41, 169. doi:10.1016/S0040-4039(99)02046-8
  19. Inoue, M.; Uehara, H.; Maruyama, M.; Hirama, M. Org. Lett. 2002, 4, 4551. DOI: 10.1021/ol027105m
  20. Sato, S.; Sakata, K.; Hashimoto, Y.; Takikawa, H.; Suzuki, K. Angew. Chem. Int. Ed. 2017, 56, 12608. DOI: 10.1002/anie.201707099
  21. (a) Oikawa, Y.; Horita, K.; Yonemitsu, O. Tetrahedron Lett. 1985, 26, 1541. doi:10.1016/S0040-4039(00)84871-6 (b) Oikawa, Y.; Tanaka, T.; Yonemitsu, O. Tetrahedron Lett. 1986, 27, 3647. doi:10.1016/S0040-4039(00)98547-2

関連反応

関連書籍

外部リンク

The following two tabs change content below.
Hiro

Hiro

Hiro

最新記事 by Hiro (全て見る)

関連記事

  1. フリース転位 Fries Rearrangment
  2. ライセルト インドール合成 Reissert Indole Sy…
  3. ジョンソン オレフィン合成 Johnson Olefinatio…
  4. トリメチレンメタン付加環化 Trimethylenemethan…
  5. 網井トリフルオロメチル化 Amii Trifluoromethy…
  6. マクコーマック反応 McCormack Reaction
  7. FAMSO
  8. フェントン反応 Fenton Reaction

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 名大・山本名誉教授に 「テトラへドロン賞」 有機化学分野で業績
  2. 抗生物質
  3. アルバート・エッシェンモーザー Albert Eschenmoser
  4. 米国版・歯痛の応急薬
  5. メーカーで反応性が違う?パラジウムカーボンの反応活性
  6. 最近の金事情
  7. 美術品保存と高分子
  8. 無保護糖を原料とするシアル酸誘導体の触媒的合成
  9. 2005年9-10月分の気になる化学関連ニュース投票結果
  10. ベンジル保護基 Benzyl (Bn) Protective Group

関連商品

注目情報

注目情報

最新記事

米国へ講演旅行へ行ってきました:Part IV

3部作で終わろうと思いながら、書くことが多すぎて終われませんでした。前回から2ヶ…

二水素錯体 Dihydrogen Complexes

水素分子がサイドオン型で金属中心に近づくと、二水素錯体を形成することができる。こうして形成した二水素…

分析化学科

お申込み・詳細はこちら◇分析化学科 (定員16名)本研修では「ものづくり企業」の品質管理等で…

多角的英語勉強法~オンライン英会話だけで満足していませんか~

国際学会で発表するにも、論文を書くにも、研究室の留学生と飲みにいくにも英語は必要です。しかし、それぞ…

ペプチドの革新的合成

第215回のスポットライトリサーチは、中部大学総合工学研究所分子性触媒センター助教・村松渉先生にお願…

年収で内定受諾を決定する際のポイントとは

転職活動の終盤で複数の企業から内定を獲得した際、「年収が決め手となって内定を受諾…

Chem-Station Twitter

PAGE TOP