[スポンサーリンク]

化学者のつぶやき

高分子と高分子の反応も冷やして加速する

[スポンサーリンク]

 

 

 

先日、冷凍食品を見ながら思いついたようにつぶやいた”凍結”反応ですが、よく調べてみると、他にも面白い論文が昨年報告されていました。

反応性が高いから冷やすのではなく、熱い二人を冷やして近づかせるChemistry。良いもの作れますよ!

さて、その気になる論文は、こちらになります。

 

”Accelerated Polymer-Polymer Click Conjugation by Freeze-Thaw Treatment”

Bioconjugate Chemistry, 23, 1503-1506, 2012

Hiroyasu Takemoto , Kanjiro Miyata , Takehiko Ishii , Shota Hattori , Shigehito Osawa, Nobuhiro Nishiyama, and Kazunori Kataoka

 

東京大学大学院工学研究科 片岡一則研究室のお仕事です。片岡先生は高分子で大変著名な先生で、第30代会長でも歴任しています。先日紹介したお仕事は理研の伊藤主任研究員のものでしたが、それ以外にも凍結を使っているとグループがあるということは、もしかしたら日本は凍結化学に強いのかもしれません。

その真偽はともかく、まずはグラフィカルアブストラクトを見てみましょう。

 

bc-2012-00182y_0002

 

わかりやすいグラフィカルアブストラクトですね。やっていることが一目で理解できます。なお、Conjugation! がCongratulations!に空目したのは私だけでしょうか?

さて、本題に入ります。反応させたい分子はsmall interfering RNA(siRNA)とPEG分子です。高分子に限らず、生体高分子を高分子で修飾するのは一般的に非常に困難です。反応率が低いことがその主要因ですが、高分子同士のごく一部の官能基が選択的に反応しなければならないからと考えれば、その反応率の低さは理解しやすいかと思います。

それでもできるだけ選択的に高分子同士を反応させようということから、シクロオクチンとアジドの間で起こるクリック反応を、複合体化の反応に採用しております。

だからといって、ただ混ぜただけではそうはうまく”クリック”されるわけではありません。やはり高分子反応は収率が低いものです。

では反応性をあげるためにはどうしたらよいでしょうか。一般的には、

 

1. 反応温度を上げる。

2. 濃度を上げる。

 

の二つが考えられますね。しかし、1.に関しては生体分子が高い温度条件下において一般に不安定であるため難しい。しかも、反応性の高い官能基が多いので、様々な予期せぬ反応が起きてしまいます。さらには、2本鎖核酸の解離も起き、結果として生体分子の構造が破壊され本来の生物活性が失われてしまいます。

では、次に取りうる方法の2ですが、貴重な生体高分子の濃度を上げろと言われても、そんな量を用意するのはコストの上で問題があります。

そこで筆者らが採用したのが、凍結濃縮現象です。凍結濃縮現象とは、溶液を凍結する際に、局所的に溶液が濃縮されたミクロドメイン構造が形成される現象のことを指しています。溶媒が結晶化して行くにつれて、溶質分子が追いやられて集積していきます。結果として生じた濃縮溶液は凝固点降下により凍結が遅れるため、反応性の高い溶液層が一時的に形成されます。ちょうど図の真ん中の状態(Frozen State)に相当します。なお、この凍結濃縮現象は食品業界ではよく使われる濃縮法のようです。

・・・と書きながら気がついたのですが、スポーツドリンクを凍らせて持って行ったことは皆さんありますよね。これ、中途半端に溶けた状態で飲むと、えらく濃いですよね。そして最後は水っぽくなるわけです。そう、簡単にいえばこれなんですよ、凍結濃縮現象とは。

 

2013-04-30_14-46-45

 

結果として、実際にこれら高分子同士を、-30 ℃で凍結させた後に4 ℃で解凍する簡便なプロセスを施すだけで反応率が飛躍的に向上したようです。そしてこの凍結解凍プロセスを経て生成したPEG-siRNA複合体は通常のsiRNAの生物活性と遜色が無かったと言うことです。低温下で行ったことにより、余計な副反応が起きなかった間接的な証拠であると言えます。誰でもできる、有効な生体高分子反応プロセスではないかと思います。

高分子反応でお困りの方、とりあえず冷凍庫に反応容器を持って行ってはいかが?

 

Avatar photo

あぽとーしす

投稿者の記事一覧

微生物から動物、遺伝子工学から有機合成化学まで広く 浅く研究してきました。論文紹介や学会報告などを通じて、研究者間の橋掛けのお手 伝いをできればと思います。一応、大学教員で、糖や酵素の研究をしております。

関連記事

  1. 連鎖と逐次重合が同時に起こる?
  2. 投票!2016年ノーベル化学賞は誰の手に??
  3. ケムステイブニングミキサー2016を終えて
  4. キラルアミンを一度に判別!高分子認識能を有するPd錯体
  5. イグ・ノーベル賞の世界展に行ってきました
  6. 付設展示会に行こう!ーシグマアルドリッチ編ー
  7. 化学素人の化学読本
  8. ネオ元素周期表

注目情報

ピックアップ記事

  1. 化学研究で役に立つデータ解析入門:エクセルでも立派な解析ができるぞ編
  2. 【PR】Twitter、はじめました
  3. MEDCHEM NEWS 31-2号「2020年度医薬化学部会賞」
  4. Organic Synthesis Workbook
  5. 化学における特許権侵害訴訟~特許の真価が問われる時~
  6. 元素周期表:文科省の無料配布用、思わぬ人気 10万枚増刷、100円で販売
  7. 白い器を覆っている透明なガラスってなんだ?
  8. 化学系ブログのランキングチャート
  9. 並外れた光可逆的粘弾性変化を示すシリコーンエラストマーの開発~市販のレーザーポインターをあてるだけで簡単にはがせる解体性粘接着剤用途に期待~
  10. 少年よ、大志を抱け、名刺を作ろう!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2013年4月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

アザボリンはニ度異性化するっ!

1,2-アザボリンの光異性化により、ホウ素・窒素原子を含むベンズバレンの合成が達成された。本異性化は…

マティアス・クリストマン Mathias Christmann

マティアス・クリストマン(Mathias Christmann, 1972年10…

ケムステイブニングミキサー2025に参加しよう!

化学の研究者が1年に一度、一斉に集まる日本化学会春季年会。第105回となる今年は、3月26日(水…

有機合成化学協会誌2025年1月号:完全キャップ化メッセンジャーRNA・COVID-19経口治療薬・発光機能分子・感圧化学センサー・キュバンScaffold Editing

有機合成化学協会が発行する有機合成化学協会誌、2025年1月号がオンライン公開されています。…

配位子が酸化??触媒サイクルに参加!!

C(sp3)–Hヒドロキシ化に効果的に働く、ヘテロレプティックなルテニウム(II)触媒が報告された。…

精密質量計算の盲点:不正確なデータ提出を防ぐために

ご存じの通り、近年では化学の世界でもデータ駆動アプローチが重要視されています。高精度質量分析(HRM…

第71回「分子制御で楽しく固体化学を開拓する」林正太郎教授

第71回目の研究者インタビューです! 今回は第51回ケムステVシンポ「光化学最前線2025」の講演者…

第70回「ケイ素はなぜ生体組織に必要なのか?」城﨑由紀准教授

第70回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

第69回「見えないものを見えるようにする」野々山貴行准教授

第69回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

第68回「表面・界面の科学からバイオセラミックスの未来に輝きを」多賀谷 基博 准教授

第68回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP