[スポンサーリンク]

化学者のつぶやき

光で2-AGの量を制御する

[スポンサーリンク]

ケージド化合物を用いた2-AG量の操作法が初めて開発された。2-AG量を時空間的に操作することができる点から、細胞生物学での応用が期待できる。

 2-アラキドノイルグリセロール

内因性カンナビノイドである2-アラキドノイルグリセロール(2-AG, 1)は、Gタンパク質共役カンナビノイド受容体の一種であるCB1とCB2のリガンドである(図1A)。
下流のシグナル伝達系は我々の気分、食欲、痛覚またはインスリン分泌などを調節している。細胞内における2-AG量の調節には様々な試みがなされてきた。
2009年Liu教授らはリパーゼ阻害剤を用いて2-AG量の調節を試みたが、他のグリセロール量にも影響する手法であった(1)
一方、光で除去可能な保護基(PRPG)をもつケージド化合物は、生理活性分子の存在量を直接制御する目的でこれまで広く利用されてきた。ケージド化合物はUVを照射するだけで生理活性分子を放出できるため、目的の生理活性分子の作用するタイミングを制御することができる。これまでに著者らは、クマリン誘導体を連結したアラキドン酸(2)およびスフィンゴシン(3)がケージド化合物として利用できること明らかにした(図1B)(2)。しかし、ジオールをクマリン誘導体で保護する場合環状アセタールの環員数が光脱保護(アンケージング)に影響する。Lawrenceらの報告によれば、五員環アセタール(4, 5)のアンケージングは可能だが、六員環アセタール(6, 7)は光耐性を示す(図1C)(3)。そのため、クマリンを連結した1,3-ジオールをケージド化合物として利用した報告例はなかった。
今回、Schultzらは、「ケージド」2-アラキドノイルグリセロール(cg2-AG, 8)を合成し、光照射によって細胞内の2-AG量を制御する手法を開発した(図1D)。六員環アセタール上のエステルがアンケージング成功の鍵であった。また、PRPGとして蛍光分子であるクマリンを用いることで、蛍光を観察するだけで2-AGの放出を追跡することができる。

図1. A.2-AGの構造 B. 著者らが報告したケージド化合物の例C. ジオール類のケージド化合物D. cg2-AGのアンケージング

 

“Photorelease of 2Arachidonoylglycerol in Live Cells”
Laguerre, A.;Hauke, S.; Qiu, J.; Kelly, M.J.; Schultz, C.J. Am. Chem. Soc.2019,141,16544-16547.
DOI: 10.1021/jacs.9b05978

論文著者の紹介


研究者:Carsten Schultz
研究者の経歴:
1986-1989 Ph.D., Chemistry, Bremen University, Germany (Prof. Bernd Jastorff)
1990-1993 Postdoc, Pharmacology, University of California San Diego, USA (Prof. Roger Y. Tsien)
1993-1996 Habilitation Fellow, Bremen University, Germany (Prof. Bernd Jastorff)
1996-2000 Researcher, Bremen University, Germany (Prof. Bernd Jastorff)
2000-2001 Group leader, Max-Planck-Institute for Molecular Physiology in Dortmund, Germany 2001- Group Leader, European Molecular Biology Laboratory, Germany
2016- Professor, Oregon Health and Science University, USA
研究内容:シグナル伝達の理解に向けたツール開発

論文の概要

著者らはまずcg2-AGの合成を行った。出発物質である7-ジエチルアミノ-4-メチルクマリン(10)をDMAと反応させた後、NaIO4により酸化し12を得た。その後、12にグリセリンを作用させてアルコール13を合成した。最後にアラキドン酸との縮合によりcg2-AGを得た(図2A)。
次にアンケージングの条件検討を行い、8のアンケージングには水および375 nmの光照射が必要であることを確認した。また、9は殆ど蛍光を発しない。これらのことから、407 nmの光照射で蛍光の減少を観測することで2-AGの放出の追跡ができることを示した(図2B)。
続いて、CB1およびCB2を発現するマウスb細胞株MIN6を用いた実験を行った。cg2-AGで処理したMIN6に375 nmの光を当てると蛍光発光強度が著しく減少した。一方、アルコール13で処理したMIN6では変化がなかったため、cg2-AGのエステル部位がアンケージングの鍵となることがわかった。(図2C)。
内因性カンナビノイドはCB1を活性化し細胞内Ca2+濃度を上昇させる。そこで、著者らは光照射前後におけるCa2+濃度変化を調べた(図2D)。cg2-AGで処理したMIN6細胞のCa2+濃度は光を照射したのみ上昇した。CB1アンタゴニストであるリモナバンド存在下培養した細胞では、Ca2+濃度が確認できなかったことから、アンケージングされたcg2-AGはCB1を特異的に活性化することが示された。また、cg-2AGで処理したMIN6細胞の膜電位の変化から、2-AGがCB1の活性化を通じてGタンパク質活性化カリウムチャネル(GIRK)の開閉に関与することも示した(図2E)。

図2. A. cg2-AGの合成 B. cg2-AGとアルコール13のUV/visスペクトル C. cg2-AGまたはアルコール13で処理したMIN6の共焦点顕微鏡写真 D. cg2-AGのCa2+に対する影響E. カリウム移動により誘起された電流(一部論文より引用)

 

以上、光で除去可能な保護基をもつ「ケージド」2-アラキドノイルグリセロールによる2-AG量の調節法が開発された。2-AG量を時空間的に操作することができる点から、細胞生物学での応用が期待できる。

参考文献

  1. Pan, B.; Wang, W.; Long, J. Z.; Sun, D.; Hillard, C. J.; Cravatt, B. F.; Liu, Q.-S. Blockade of 2-Arachidonoylglycerol Hydrolysis by Selective Monoacylglycerol Lipase Inhibitor 4-Nitrophenyl 4-(Dibenzo- [d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate (JZL184) Enhances Retrograde Endocannabinoid Signaling. J. Pharmacol. Exp. Ther. 2009,331,591-597. DOI: 10.1124/jpet.109.158162
  2. (a) Nadler, A.; Yushchenko, D. A.; Müller, R.; Stein, F.; Feng, S.; Mulle, C.; Carta, M.; Schultz, C. Exclusive Photorelease of Signalling Lipids at the Plasma Membrane. Nat. Commun. 2015,6,10056. DOI: 10.1038/ncomms10056 (b) Höglinger, D.; Haberkant, P.; Aguilera-Romero, A.; Riezman, H.; Porter, F. D.; Platt, F. M.; Galione, A.; Schultz, C. Intracellular Sphingosine Releases Calcium from Lysosomes.eLife 2015, 4,No. e10616. DOI: 10.7554/eLife.10616
  3. Lin, W.; Lawrence, D. S. A Strategy for the Construction of Caged Diols Using a Photolabile Protecting Group. J. Org. Chem.2002,67,2723-2726. DOI: 10.1021/jo0163851

 

山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. E-mail Alertを活用しよう!
  2. ヒト遺伝子の ヒット・ランキング
  3. 量子力学が予言した化学反応理論を実験で証明する
  4. ボロン酸エステルをモノ・ジフルオロメチル基に変える
  5. 徒然なるままにセンター試験を解いてみた(2018年版)
  6. イミニウム励起触媒系による炭素ラジカルの不斉1,4-付加
  7. 化学パズル・不斉窒素化合物
  8. 生物の仕組みに倣う:背景と光に応じて色が変わる顔料の開発

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. クリストフ・レーダー Christoph Rader
  2. ライトケミカル工業株式会社ってどんな会社?
  3. N-ヘテロ環状カルベン / N-Heterocyclic Carbene (NHC)
  4. なぜ青色LEDがノーベル賞なのか?ー雑記編
  5. 2016年9月の注目化学書籍
  6. 林松 Song Lin
  7. 「社会との関係を見直せ」とはどういうことか
  8. クレイグ・ホーカー Craig J. Hawker
  9. ウルマンカップリング Ullmann Coupling
  10. なぜ青色LEDがノーベル賞なのか?ー性能向上・量産化編

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

ジョン・ケンドリュー John C. Kendrew

ジョン・コウデリー・ケンドリュー(John Cowdery Kendrew、1917年3月24日-1…

食品添加物はなぜ嫌われるのか: 食品情報を「正しく」読み解くリテラシー

(さらに…)…

第100回―「超分子包接による化学センシング」Yun-Bao Jiang教授

第100回の海外化学者インタビューは、Yun-Bao Jiang教授です。厦門大学化学科に所属し、電…

第七回ケムステVシンポジウム「有機合成化学の若い力」を開催します!

第5回のケムステVシンポもうすぐですね。そして、第6回からほとんど連続となりますが、第7回のケムステ…

「自分の意見を言える人」がしている3つのこと

コロナ禍の影響により、ここ数カ月はオンラインでの選考が増えている。先日、はじめてオンラインでの面接を…

ブルース・リプシュッツ Bruce H. Lipshutz

ブルース・リプシュッツ(Bruce H. Lipshutz, 1951–)はアメリカの有機化学者であ…

化学者のためのエレクトロニクス入門② ~電子回路の製造工程編~

bergです。さて、前回は日々微細化を遂げる電子回路の歴史についてご紹介しました。二回目の今回は、半…

研究テーマ変更奮闘記 – PhD留学(前編)

研究をやる上で、テーマってやっぱり大事ですよね。私はアメリカの大学院に留学中(終盤)という立場ですが…

Chem-Station Twitter

PAGE TOP