[スポンサーリンク]

化学者のつぶやき

10手で陥落!(+)-pepluanol Aの全合成

[スポンサーリンク]

高度な縮環構造をもつ複雑天然物ペプラノールAの全合成が、わずか10工程で達成された。Diels–Alder反応とNHK反応による立体制御を伴った骨格構築が鍵である。

ユーフォルビアジテルペン類の合成研究

ユーフォルビア属の植物は古くから漢方薬として利用され、過去数十年にわたる生物活性研究によって、細胞毒性や抗ウイルス性、抗腫瘍性作用を示すことが知られる。これらの植物から単離されるジテルペン類は750種を超え、多様で複雑な骨格構造を有することから、合成化学的にも興味深い化合物群である[1]。最近も、ユーフォルビア属のチャボタイゲキと呼ばれる植物から、K+チャネル(kv1.3)阻害作用を示すpepluanol A–D(14)が単離された(Figure 1A)[2]。これらは他に類をみない四環性縮環構造に不斉四級炭素を含む連続不斉中心を有し、その骨格構築は極めて挑戦的である。
2017年、Dingらは(±)-1の初の全合成を達成した(Figure 1B)[3]。七員環エノン6とジエン7とのDiels–Alder反応による六員環形成(8)の後、6工程でエポキシド9へと導いた。続いて、9のTi(III)触媒を用いた還元的環化反応による五員環形成(10)、10のシクロプロパン化を含む5工程で1を合成した(全22工程)。また2020年にSheらによってpepluanol B(2)の不斉全合成が報告されているが(全20工程)[4]、pepluanol C(3)およびD(4)の合成は未だ達成されていない。
今回、コンスタンツ大学のGaich教授らは、極限まで官能基変換の短工程化を目指した結果、(+)-1の不斉全合成を全10工程まで短縮することに成功した。著者らによる(+)–1の逆合成解析を示す (Figure 1C)。1のエノンとアリルアルコール部位は合成終盤で11を3段階酸化することにより導入できると考えた。1の主骨格を有する1112の分子内Diels–Alder反応により、12はエノン13とアルデヒド14のNHK反応による合成を計画した。

Figure 1. (A) pepluanol A–Dの構造 (B) Dingらによるpepluanol A(1)の合成 (C) 今回の1の合成戦略

 

Ten-Step Asymmetric Total Synthesis of (+)-Pepluanol A
Yuan, P.; Gerlinger, K, G.; Herberger, J.; Gaich, T.; J. Am. Chem. Soc. 2021, 143, 11934–11938.
DOI: 10.1021/jacs.1c05257

論文著者の紹介

研究者:Tanja Gaich
研究者の経歴:
2005–2009 Ph.D., University of Vienna (Prof. J. Mulzer)
2009–2010 Postdoc, The Scripps Research Institute (Prof. P. S. Baran)
2010–2015 Independent Researcher, Leibniz University Hannover (Prof. M. Kalesse)
2015– Full Professor of Organic Chemistry, University of Konstanz
研究内容:天然物の全合成, 合成方法論の開発

論文の概要

はじめに著者らは(+)-3-carene(15)と、アルコール16を出発物質として、各々5工程で1314を合成した(Figure 2)[5]
1314のNHK反応によりDiels–Alder反応前駆体に導いたところ、3種類のジアステレオマー12a12b12cが生成した。続いてこれらをo-xylene中150 °Cで加熱し、分子内Diels–Alder反応を試みた(条件A)。
その結果、12aのみ反応が進行したが、得られた11は低収率(17%)にとどまった。12のカルボニル基とヒドロキシ基の分子内水素結合の形成が反応の進行を妨げていると考え、12のTES保護体17を再度条件Aで反応させた。17aからは収率90%で環化体18が得られたものの、17bからは所望の環化体が得られず、17cでは1,5-水素移動が進行し19が生成した。
この結果を受け、筆者らはC13位の立体化学が反応の進行を左右すると考えた。そこで、17a17bの混合物にDBUを加え加熱した(条件 B)。
その結果、収率88%で18が単一のジアステレオマーとして得られ、立体特異的Diels–Alder反応により五員環と六員環を一挙に構築することに成功した。その後、環化体18に対してLDAを作用させメチル基を立体反転させたのち、TES基の除去を経て、20へと導いた。
なお、かなり無理があるが2012aおよび12bからワンポットで合成することも可能である。アルコール20のPCC酸化によりケトン21とし、三枝・伊藤酸化によりエノン22とした。最後に二酸化セレンを用いて22のアリル位を酸化することで(+)-1を得た。

Figure 2. (+)-pepluanol A (1)の合成経路

 

以上、わずか10工程での(+)-pepluanol Aの不斉全合成が報告された。本合成の鍵は、導入困難な縮環構造を多官能基化された前駆体からDiels–Alder反応により一挙に構築したことである。

参考文献

  1. Shi, Q. W.; Su, X. H.; Kiyota, H.; Chemical and Pharmacological Research of the Plants in Genus Euphorbia. Chem. Rev. 2008, 108, 4295–4327. DOI:10.1021/cr078350s
  2. (a)Wan, L. S.; Nian, Y.; Ye, C. J.; Shao, L. D.; Peng, X. R.; Geng, C. A.; Zuo, Z. L.; Li, X. N.; Yang, J.; Zhou, M.; Qiu, M. H.; Three Minor Diterpenoids with Three Carbon Skeletons from Euphorbia peplus. Lett. 2016, 18, 2166–2169. DOI: 10.1021/acs.orglett.6b00787 (b)Wan, L. S.; Nian, Y.; Peng, X. R.; Shao, L. D.; Li, X. N.; Yang, J.; Zhou, M.; Qiu, M. H.; Pepluanols C–D, Two Diterpenoids with Two Skeletons from Euphorbia peplus. Org. Lett. 2018, 20, 3074–3078. DOI: 10.1021/acs.orglett.8b01114
  3. Xian, J.; Liu, Z.; Zhu, A.; Rao, P.; Yu, L.; Ding, H. Diastereoselective Total Synthesis of the Euphorbia Diterpenoid Pepluanol A: A Reductive Annulation Approach. Angew. Chem., Int. Ed. 2017, 56, 8898–8901. DOI: 10.1002/anie.201704929
  4. Zhang, J.; Liu, M.; Wu, C.; Zhao, G.; Chen, P.; Zhou, L.; Xie, X.; Fang, R.; Li, H.; She, X.; Total Synthesis of (–)-Pepluanol B: Conformational Control of the Eight-Membered-Ring System. Angew. Chem., Int. Ed. 2020, 59, 3966–3970. DOI: 10.1002/anie.201915876
  5. Jorgensen, L.; McKerrall, S. J.; Kuttruff, C. A.; Ungeheuer, F.; Felding, J.; Baran, P. S.; 14-Step Synthesis of (+)-Ingenol from (+)-3-Carene. Science 2014, 341, 878–882. DOI: 1126/science.1241606
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. ヒュッケル法(前編)~手計算で分子軌道を求めてみた~
  2. ご注文は海外大学院ですか?〜選考編〜
  3. 乾燥剤の種類と合成化学での利用法
  4. 荷電π電子系が発現するジラジカル性をイオンペア形成によって制御
  5. テトラセノマイシン類の全合成
  6. SciFinder Future Leaders 2017: プ…
  7. 【クラリベイトウェブセミナー】 新リリース! 今までの研究開発に…
  8. E. J. Corey からの手紙

注目情報

ピックアップ記事

  1. ネッド・シーマン Nadrian C. Seeman
  2. 高効率な可視-紫外フォトン・アップコンバージョン材料の開発 ~太陽光や室内LED光から紫外光の発生~
  3. サン・タン San H. Thang
  4. 定量PCR(qPCR ; quantitative PCR)、リアルタイムPCR
  5. マイクロ波を用いた革新的製造プロセスと環境/化学領域への事業展開 (プラスチック分解/油化、ゼオライト合成、石油化学系気固反応、エステル/アミド合成など)
  6. ウォルター・カミンスキー Walter Kaminsky
  7. 【2021年卒業予定 修士1年生対象】企業での研究開発を知る講座
  8. 二酸化炭素 (carbon dioxide)
  9. ヘルベルト・ワルトマン Herbert Waldmann
  10. 一流の化学雑誌をいかにしてつくるか?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年10月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP