[スポンサーリンク]

化学者のつぶやき

10手で陥落!(+)-pepluanol Aの全合成

[スポンサーリンク]

高度な縮環構造をもつ複雑天然物ペプラノールAの全合成が、わずか10工程で達成された。Diels–Alder反応とNHK反応による立体制御を伴った骨格構築が鍵である。

ユーフォルビアジテルペン類の合成研究

ユーフォルビア属の植物は古くから漢方薬として利用され、過去数十年にわたる生物活性研究によって、細胞毒性や抗ウイルス性、抗腫瘍性作用を示すことが知られる。これらの植物から単離されるジテルペン類は750種を超え、多様で複雑な骨格構造を有することから、合成化学的にも興味深い化合物群である[1]。最近も、ユーフォルビア属のチャボタイゲキと呼ばれる植物から、K+チャネル(kv1.3)阻害作用を示すpepluanol A–D(14)が単離された(Figure 1A)[2]。これらは他に類をみない四環性縮環構造に不斉四級炭素を含む連続不斉中心を有し、その骨格構築は極めて挑戦的である。
2017年、Dingらは(±)-1の初の全合成を達成した(Figure 1B)[3]。七員環エノン6とジエン7とのDiels–Alder反応による六員環形成(8)の後、6工程でエポキシド9へと導いた。続いて、9のTi(III)触媒を用いた還元的環化反応による五員環形成(10)、10のシクロプロパン化を含む5工程で1を合成した(全22工程)。また2020年にSheらによってpepluanol B(2)の不斉全合成が報告されているが(全20工程)[4]、pepluanol C(3)およびD(4)の合成は未だ達成されていない。
今回、コンスタンツ大学のGaich教授らは、極限まで官能基変換の短工程化を目指した結果、(+)-1の不斉全合成を全10工程まで短縮することに成功した。著者らによる(+)–1の逆合成解析を示す (Figure 1C)。1のエノンとアリルアルコール部位は合成終盤で11を3段階酸化することにより導入できると考えた。1の主骨格を有する1112の分子内Diels–Alder反応により、12はエノン13とアルデヒド14のNHK反応による合成を計画した。

Figure 1. (A) pepluanol A–Dの構造 (B) Dingらによるpepluanol A(1)の合成 (C) 今回の1の合成戦略

 

Ten-Step Asymmetric Total Synthesis of (+)-Pepluanol A
Yuan, P.; Gerlinger, K, G.; Herberger, J.; Gaich, T.; J. Am. Chem. Soc. 2021, 143, 11934–11938.
DOI: 10.1021/jacs.1c05257

論文著者の紹介

研究者:Tanja Gaich
研究者の経歴:
2005–2009 Ph.D., University of Vienna (Prof. J. Mulzer)
2009–2010 Postdoc, The Scripps Research Institute (Prof. P. S. Baran)
2010–2015 Independent Researcher, Leibniz University Hannover (Prof. M. Kalesse)
2015– Full Professor of Organic Chemistry, University of Konstanz
研究内容:天然物の全合成, 合成方法論の開発

論文の概要

はじめに著者らは(+)-3-carene(15)と、アルコール16を出発物質として、各々5工程で1314を合成した(Figure 2)[5]
1314のNHK反応によりDiels–Alder反応前駆体に導いたところ、3種類のジアステレオマー12a12b12cが生成した。続いてこれらをo-xylene中150 °Cで加熱し、分子内Diels–Alder反応を試みた(条件A)。
その結果、12aのみ反応が進行したが、得られた11は低収率(17%)にとどまった。12のカルボニル基とヒドロキシ基の分子内水素結合の形成が反応の進行を妨げていると考え、12のTES保護体17を再度条件Aで反応させた。17aからは収率90%で環化体18が得られたものの、17bからは所望の環化体が得られず、17cでは1,5-水素移動が進行し19が生成した。
この結果を受け、筆者らはC13位の立体化学が反応の進行を左右すると考えた。そこで、17a17bの混合物にDBUを加え加熱した(条件 B)。
その結果、収率88%で18が単一のジアステレオマーとして得られ、立体特異的Diels–Alder反応により五員環と六員環を一挙に構築することに成功した。その後、環化体18に対してLDAを作用させメチル基を立体反転させたのち、TES基の除去を経て、20へと導いた。
なお、かなり無理があるが2012aおよび12bからワンポットで合成することも可能である。アルコール20のPCC酸化によりケトン21とし、三枝・伊藤酸化によりエノン22とした。最後に二酸化セレンを用いて22のアリル位を酸化することで(+)-1を得た。

Figure 2. (+)-pepluanol A (1)の合成経路

 

以上、わずか10工程での(+)-pepluanol Aの不斉全合成が報告された。本合成の鍵は、導入困難な縮環構造を多官能基化された前駆体からDiels–Alder反応により一挙に構築したことである。

参考文献

  1. Shi, Q. W.; Su, X. H.; Kiyota, H.; Chemical and Pharmacological Research of the Plants in Genus Euphorbia. Chem. Rev. 2008, 108, 4295–4327. DOI:10.1021/cr078350s
  2. (a)Wan, L. S.; Nian, Y.; Ye, C. J.; Shao, L. D.; Peng, X. R.; Geng, C. A.; Zuo, Z. L.; Li, X. N.; Yang, J.; Zhou, M.; Qiu, M. H.; Three Minor Diterpenoids with Three Carbon Skeletons from Euphorbia peplus. Lett. 2016, 18, 2166–2169. DOI: 10.1021/acs.orglett.6b00787 (b)Wan, L. S.; Nian, Y.; Peng, X. R.; Shao, L. D.; Li, X. N.; Yang, J.; Zhou, M.; Qiu, M. H.; Pepluanols C–D, Two Diterpenoids with Two Skeletons from Euphorbia peplus. Org. Lett. 2018, 20, 3074–3078. DOI: 10.1021/acs.orglett.8b01114
  3. Xian, J.; Liu, Z.; Zhu, A.; Rao, P.; Yu, L.; Ding, H. Diastereoselective Total Synthesis of the Euphorbia Diterpenoid Pepluanol A: A Reductive Annulation Approach. Angew. Chem., Int. Ed. 2017, 56, 8898–8901. DOI: 10.1002/anie.201704929
  4. Zhang, J.; Liu, M.; Wu, C.; Zhao, G.; Chen, P.; Zhou, L.; Xie, X.; Fang, R.; Li, H.; She, X.; Total Synthesis of (–)-Pepluanol B: Conformational Control of the Eight-Membered-Ring System. Angew. Chem., Int. Ed. 2020, 59, 3966–3970. DOI: 10.1002/anie.201915876
  5. Jorgensen, L.; McKerrall, S. J.; Kuttruff, C. A.; Ungeheuer, F.; Felding, J.; Baran, P. S.; 14-Step Synthesis of (+)-Ingenol from (+)-3-Carene. Science 2014, 341, 878–882. DOI: 1126/science.1241606

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. MSI.TOKYO「MULTUM-FAB」:TLC感覚でFAB-…
  2. ポンコツ博士の海外奮闘録⑧〜博士,鍵反応を仕込む②〜
  3. ワイリーからキャンペーンのご案内 – 化学会・薬学会…
  4. 米国へ講演旅行へ行ってきました:Part III
  5. Reaxys体験レポート:ログイン~物質検索編
  6. 文具に凝るといふことを化学者もしてみむとてするなり : ② 「ポ…
  7. 第1回ACCELシンポジウムを聴講してきました
  8. 天然バナジウム化合物アマバジンの奇妙な冒険

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ウルマンエーテル合成 Ullmann Ether Synthesis
  2. 有機合成化学協会誌7月号:ランドリン全合成・分子間interrupted Pummerer反応・高共役拡張ポルフィリノイド・イナミド・含フッ素ビニルスルホニウム塩・ベンゾクロメン
  3. 独メルク、米シグマアルドリッチを買収
  4. 機械学習用のデータがない?計算機上で集めませんか。データ駆動型インシリコ不斉触媒設計で有機合成DX
  5. 「魔法の水でゴミの山から“お宝”抽出」
  6. sinceの使い方
  7. デヴィッド・リー David A. Leigh
  8. アルコールを空気で酸化する!
  9. 抗体結合ペプチドを用いる非共有結合的抗体-薬物複合体の創製
  10. 第25回 溶媒の要らない固体中の化学変換 – Len MacGillivray教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年10月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

注目情報

最新記事

表面酸化した銅ナノ粒子による低温焼結に成功~銀が主流のプリンテッドエレクトロニクスに、銅という選択肢を提示~

第393回のスポットライトリサーチは、北海道大学 大学院工学院 材料科学専攻 マテリアル設計講座 先…

高分子材料におけるマテリアルズ・インフォマティクスの活用とは?

 申込みはこちら■セミナー概要本動画は、20022年5月18日に開催されたセミナー「高分…

元素のふるさと図鑑

2022年も折り返しに差し掛かりました。2022年は皆さんにとってどんな年になり…

Q&A型ウェビナー カーボンニュートラル実現のためのマイクロ波プロセス 〜ケミカルリサイクル・乾燥・濃縮・焼成・剥離〜

<内容>本ウェビナーでは脱炭素化を実現するための手段として、マイクロ波プロセスをご紹介いたします…

カルボン酸、窒素をトスしてアミノ酸へ

カルボン酸誘導体の不斉アミノ化によりキラルα-アミノ酸の合成法が報告された。カルボン酸をヒドロキシル…

海洋シアノバクテリアから超強力な細胞増殖阻害物質を発見!

第 392回のスポットライトリサーチは、慶應義塾大学大学院 理工学研究科 博士後期課…

ポンコツ博士の海外奮闘録⑧〜博士,鍵反応を仕込む②〜

ポンコツシリーズ一覧国内編:1話・2話・3話国内外伝:1話・2話・留学TiPs海外編:1…

給電せずに電気化学反応を駆動 ~環境にやさしい手法として期待、極限環境での利用も~

第391回のスポットライトリサーチは、東京工業大学物質理工学院応用化学系 稲木研究室の岩井 優 (い…

GCにおける水素のキャリアガスとしての利用について

最近ヘリウムの深刻な供給不安により、GCで使うガスボンベの納期が未定となってしまい、ヘリウムが無くな…

タンパク質リン酸化による液-液相分離制御のしくみを解明 -細胞内非膜型オルガネラの構築原理の解明へ-

第 390 回のスポットライトリサーチは、東京大学大学院 理学系研究科 助教の 山崎…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP