[スポンサーリンク]

化学者のつぶやき

有機ルイス酸触媒で不斉向山–マイケル反応

[スポンサーリンク]

ブレンステッド酸とシリルケテンアセタールを組み合わせてルイス酸として機能させることで、α,β-不飽和エステルを求電子剤とした触媒的不斉向山–マイケル反応が達成された。

α,β-不飽和エステルを用いた不斉マイケル付加反応

エノラート等価体のα,β-不飽和カルボニル化合物へのマイケル付加反応(1,4付加反応)は広く利用されている炭素–炭素結合形成反応であり、近年は不斉触媒を用いた不斉マイケル付加反応の研究が盛んに行われている。

これまでα,β-不飽和カルボニル化合物を用いた触媒的不斉マイケル付加反応の開発がなされてきた。α,β-不飽和カルボニル化合物の中でもα,β-不飽和エステルは求電子性が低いため[1]、当該反応において挑戦的な基質とされてきた。

これまでにエノラートを求核剤とする不斉マイケル付加反応として、不斉相間移動触媒[2a]、不斉ブレンステッド塩基[2b]、そしてエナミン経由型の不斉有機触媒[2c]を用いる手法が報告されてきた(図1A)。

一方で、シリルエノールエーテルおよびシリルケテンアセタールを求核剤に用いる触媒的不斉向山–マイケル反応の報告はない。シリルエノールエーテルの求核性が低いため、如何にα,β-不飽和エステルの求電子性を活性化しつつ立体選択性を制御するかが重要となる。

オキサザボロリジン誘導体をルイス酸触媒に用いてα,β-不飽和エステルを活性化する不斉反応が知られるが、フルオロアルキルエステルなどの活性なエステルを用いる必要がある[3]。原子効率および工程数の観点からメチルエステルなどの一般的なアルキルエステルを直接活性化できる効率的な不斉触媒の開発が望まれる。

今回Listらは、独自に開発した強力なブレンステッド酸であるイミドジホスホリミダート(IDPi)とシリルケテンアセタール(SKA)から生成するシリリウムルイス酸を不斉触媒として、SKAとα,β-不飽和メチルエステルとの不斉向山–マイケル反応の開発に成功したので紹介する(図1B)。

図1. α,β-不飽和エステルへの不斉マイケル付加反応

 

論文著者の紹介

研究者:Benjamin List
1993 Diploma, Free University of Berlin
1997 Ph.D., University of FrankFurt (Prof. J. Mulzer)
1997-1998 Posdoc, Scripps Research Institute, USA (Prof. R. Lerner)
1999-2003 Assistant Professor (Tenure Track), Scripps Research Institute, USA
2003-2005 Group Leader at Max Planck Institute for Coal Research
2005- Director at Max Planck Institute for Coal Research

研究内容:有機触媒反応および不斉有機触媒の開発

論文の概要

本反応は触媒量のIDPi存在下、α,β-不飽和メチルエステルとSKAをシクロヘキサン溶媒中0 °Cで反応させることにより、高エナンチオ選択的にマイケル付加が進行する。非脱水溶媒を用いた場合や空気下であっても反応は円滑に進行する。α,β-不飽和メチルエステルとしては、様々な桂皮酸メチルエステル類や3-アルキルアクリル酸メチルが反応に適用可能である(図2A)。また、本反応はメチルエステルにのみ適用可能であり、その他のエステルを用いた際は収率およびエナンチオ選択性が著しく低下する。求核剤としては環状SKAや一置換SKAも用いることができる。

著者らは以下のような機構で反応が進行すると推定している(図2B)。始めにSKAがIDPiによりプロトン化され、シリル化エステルAを形成する。続いてケイ素移動によりキラルイオン対Bが生成することでα,β-不飽和エステルが活性化される。これが求核剤であるSKAと反応することでジシリル化中間体Cを与える。最後に再びケイ素移動によりDが得られる。Dの生成はNMR測定により支持されている。反応をメタノールで停止することによりDは目的の1,5-ジエステル化合物へと変換される。

以上、ブレンステッド酸IDPiとSKAを組み合わせたルイス酸を用いたエナンチオ選択的向山–マイケル反応が開発された。本反応が多様な化合物の不斉合成へと応用されていくことを期待したい。

図2. (A) 基質適用範囲 (B) 推定反応機構

参考文献

  1. Jangra, A.; Asahara, H.; Li, Z.; Zipse, C.; Ofial, A.; Mayr, H. J, Am. Chem. Soc. 2017, 139, 13318. DOI: 10.1021/jacs.7b05106
  2. (a)Corey, E. J.; Noe, M.; Xu, F. Tetrahedron Lett. 1998, 39, 5347. DOI: 1016/S0040-4039(98)01067-3 (b)Saito, S.; Tsubogo, T.; Kobayashi, S. J. Am. Chem. Soc. 2007, 129, 5364. DOI: 10.1021/ja0709730 (c) Kang, J.; Carter, R. Org. Lett. 2012, 14, 3178. DOI: 10.1021/ol301272r
  3. Canales, E.; Corey, E. J. J. Am. Chem. Soc. 2007, 129, 12686. DOI: 10.1021/ja0765262
The following two tabs change content below.
山口 研究室
早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 化学パズル・不斉窒素化合物
  2. 【21卒】太陽ホールディングスインターンシップ
  3. CO2の資源利用を目指した新たなプラスチック合成法
  4. 有機合成化学協会誌3月号:鉄-インジウム錯体・酸化的ハロゲン化反…
  5. 2007年度ノーベル化学賞を予想!(1)
  6. リケラボとコラボして特集記事を配信します
  7. Reaxys体験レポート:ログイン~物質検索編
  8. 単結合を極める

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 高速エバポレーションシステムを使ってみた:バイオタージ「V-10 Touch」
  2. 2013年ノーベル化学賞は誰の手に?トムソンロイター版
  3. 新たな製品から未承認成分検出 大津の会社製造
  4. 窒化ガリウムの低コスト結晶製造装置を開発
  5. アルカリ土類金属触媒の最前線
  6. 出光・昭和シェル、統合を発表
  7. 集光型太陽光発電システムの市場動向・技術動向【終了】
  8. 第八回 ユニークな触媒で鏡像体をつくり分けるー林民生教授
  9. 【PR】Chem-Stationで記事を書いてみませんか?【スタッフ・寄稿募集】
  10. タミフルの効果

関連商品

注目情報

注目情報

最新記事

第49回―「超分子の電気化学的挙動を研究する」Angel Kaifer教授

第49回の海外化学者インタビューは、エンジェル・カイファー教授です。マイアミ大学化学科で超分子系電気…

日本化学会 第100春季年会 市民公開講座 夢をかなえる科学

■ 概要企画名:    市民公開講座 夢をかなえる科学主催:        公益社団法人…

第48回―「周期表の歴史と哲学」Eric Scerri博士

第48回の海外化学者インタビューは、エリック・セリー博士です。英国で教育を受け、カリフォルニア大学ロ…

ペプチド縮合を加速する生体模倣型有機触媒

2019年、ニューヨーク大学のParamjit S. Aroraらは、活性アシル中間体への求核付加遷…

第47回―「ロタキサン・カテナン・クラウンエーテルの超分子化学」Harry Gibson教授

第47回の海外化学者インタビューは、ハリー・ギブソン教授です。バージニア工科大学の化学科に所属し、プ…

女優・吉岡里帆さんが、化学大好きキャラ「DIC岡里帆(ディーアイシーおか・りほ)」に変身!

印刷インキや有機顔料世界トップシェアのDIC株式会社は、2020年1月より、数々のヒット作に出演し、…

Chem-Station Twitter

PAGE TOP