[スポンサーリンク]

化学者のつぶやき

有機ルイス酸触媒で不斉向山–マイケル反応

[スポンサーリンク]

ブレンステッド酸とシリルケテンアセタールを組み合わせてルイス酸として機能させることで、α,β-不飽和エステルを求電子剤とした触媒的不斉向山–マイケル反応が達成された。

α,β-不飽和エステルを用いた不斉マイケル付加反応

エノラート等価体のα,β-不飽和カルボニル化合物へのマイケル付加反応(1,4付加反応)は広く利用されている炭素–炭素結合形成反応であり、近年は不斉触媒を用いた不斉マイケル付加反応の研究が盛んに行われている。

これまでα,β-不飽和カルボニル化合物を用いた触媒的不斉マイケル付加反応の開発がなされてきた。α,β-不飽和カルボニル化合物の中でもα,β-不飽和エステルは求電子性が低いため[1]、当該反応において挑戦的な基質とされてきた。

これまでにエノラートを求核剤とする不斉マイケル付加反応として、不斉相間移動触媒[2a]、不斉ブレンステッド塩基[2b]、そしてエナミン経由型の不斉有機触媒[2c]を用いる手法が報告されてきた(図1A)。

一方で、シリルエノールエーテルおよびシリルケテンアセタールを求核剤に用いる触媒的不斉向山–マイケル反応の報告はない。シリルエノールエーテルの求核性が低いため、如何にα,β-不飽和エステルの求電子性を活性化しつつ立体選択性を制御するかが重要となる。

オキサザボロリジン誘導体をルイス酸触媒に用いてα,β-不飽和エステルを活性化する不斉反応が知られるが、フルオロアルキルエステルなどの活性なエステルを用いる必要がある[3]。原子効率および工程数の観点からメチルエステルなどの一般的なアルキルエステルを直接活性化できる効率的な不斉触媒の開発が望まれる。

今回Listらは、独自に開発した強力なブレンステッド酸であるイミドジホスホリミダート(IDPi)とシリルケテンアセタール(SKA)から生成するシリリウムルイス酸を不斉触媒として、SKAとα,β-不飽和メチルエステルとの不斉向山–マイケル反応の開発に成功したので紹介する(図1B)。

図1. α,β-不飽和エステルへの不斉マイケル付加反応

 

論文著者の紹介

研究者:Benjamin List
1993 Diploma, Free University of Berlin
1997 Ph.D., University of FrankFurt (Prof. J. Mulzer)
1997-1998 Posdoc, Scripps Research Institute, USA (Prof. R. Lerner)
1999-2003 Assistant Professor (Tenure Track), Scripps Research Institute, USA
2003-2005 Group Leader at Max Planck Institute for Coal Research
2005- Director at Max Planck Institute for Coal Research

研究内容:有機触媒反応および不斉有機触媒の開発

論文の概要

本反応は触媒量のIDPi存在下、α,β-不飽和メチルエステルとSKAをシクロヘキサン溶媒中0 °Cで反応させることにより、高エナンチオ選択的にマイケル付加が進行する。非脱水溶媒を用いた場合や空気下であっても反応は円滑に進行する。α,β-不飽和メチルエステルとしては、様々な桂皮酸メチルエステル類や3-アルキルアクリル酸メチルが反応に適用可能である(図2A)。また、本反応はメチルエステルにのみ適用可能であり、その他のエステルを用いた際は収率およびエナンチオ選択性が著しく低下する。求核剤としては環状SKAや一置換SKAも用いることができる。

著者らは以下のような機構で反応が進行すると推定している(図2B)。始めにSKAがIDPiによりプロトン化され、シリル化エステルAを形成する。続いてケイ素移動によりキラルイオン対Bが生成することでα,β-不飽和エステルが活性化される。これが求核剤であるSKAと反応することでジシリル化中間体Cを与える。最後に再びケイ素移動によりDが得られる。Dの生成はNMR測定により支持されている。反応をメタノールで停止することによりDは目的の1,5-ジエステル化合物へと変換される。

以上、ブレンステッド酸IDPiとSKAを組み合わせたルイス酸を用いたエナンチオ選択的向山–マイケル反応が開発された。本反応が多様な化合物の不斉合成へと応用されていくことを期待したい。

図2. (A) 基質適用範囲 (B) 推定反応機構

参考文献

  1. Jangra, A.; Asahara, H.; Li, Z.; Zipse, C.; Ofial, A.; Mayr, H. J, Am. Chem. Soc. 2017, 139, 13318. DOI: 10.1021/jacs.7b05106
  2. (a)Corey, E. J.; Noe, M.; Xu, F. Tetrahedron Lett. 1998, 39, 5347. DOI: 1016/S0040-4039(98)01067-3 (b)Saito, S.; Tsubogo, T.; Kobayashi, S. J. Am. Chem. Soc. 2007, 129, 5364. DOI: 10.1021/ja0709730 (c) Kang, J.; Carter, R. Org. Lett. 2012, 14, 3178. DOI: 10.1021/ol301272r
  3. Canales, E.; Corey, E. J. J. Am. Chem. Soc. 2007, 129, 12686. DOI: 10.1021/ja0765262
The following two tabs change content below.
山口 研究室
早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. PACIFICHEM2010に参加してきました!②
  2. 学振申請書を磨き上げる11のポイント [文章編・後編]
  3. 安全なジアゾ供与試薬
  4. BASFとはどんな会社?-1
  5. 分析技術ーChemical Times特集より
  6. 【書籍】10分間ミステリー
  7. コランニュレンの安定結合を切る
  8. スイスの博士課程ってどうなの?2〜ヨーロッパの博士課程に出願する…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 糖鎖を直接連結し天然物をつくる
  2. 学部生にオススメ:「CSJ カレントレビュー」で最新研究をチェック!
  3. Cyclopropanes in Organic Synthesis
  4. バートン・ケロッグ反応 Barton-Kellogg Reaction
  5. 硫酸エステルの合成 Synthesis of Organosulfate
  6. 1-トリフルオロメチル-3,3-ジメチル-1,2-ベンゾヨードキソール:1-Trifluoromethyl-3,3-dimethyl-1,2-benziodoxole
  7. ベン・シェンBen Shen
  8. 積水化学工業、屋外の使用に特化した養生テープ販売 実証実験で耐熱・対候性を訴求
  9. Nanomaterials: An Introduction to Synthesis, Properties and Applications, 2nd Edition
  10. (古典的)アルドール反応 (Classical) Aldol Reaction

関連商品

注目情報

注目情報

最新記事

ヒドロゲルの新たな力学強度・温度応答性制御法

第230回のスポットライトリサーチは、東京農工大学大学院工学府(村岡研究室)・石田敦也さんにお願い致…

光誘導アシルラジカルのミニスキ型ヒドロキシアルキル化反応

可視光照射条件下でのアジン類のミニスキ型ヒドロキシアルキル化反応が開発された。官能基許容性が高いため…

イオン交換が分子間電荷移動を駆動する協奏的現象の発見

第229回のスポットライトリサーチは、東京大学大学院 新領域創成科学研究科(竹谷・岡本研究室)・山下…

化学産業における規格の意義

普段、実験で使う溶媒には、試薬特級や試薬一級といった”グレード”が記載されている。一般的には、特級の…

特許資産規模ランキング2019、トップ3は富士フイルム、三菱ケミカル、住友化学

株式会社パテント・リザルトは、独自に分類した「化学」業界の企業を対象に、各社が保有する特許資産を質と…

TQ: TriQuinoline

第228回のスポットライトリサーチは、足立 慎弥さんにお願い致しました。シンプルながらこれま…

Chem-Station Twitter

PAGE TOP