[スポンサーリンク]

化学者のつぶやき

有機ルイス酸触媒で不斉向山–マイケル反応

[スポンサーリンク]

ブレンステッド酸とシリルケテンアセタールを組み合わせてルイス酸として機能させることで、α,β-不飽和エステルを求電子剤とした触媒的不斉向山–マイケル反応が達成された。

α,β-不飽和エステルを用いた不斉マイケル付加反応

エノラート等価体のα,β-不飽和カルボニル化合物へのマイケル付加反応(1,4付加反応)は広く利用されている炭素–炭素結合形成反応であり、近年は不斉触媒を用いた不斉マイケル付加反応の研究が盛んに行われている。

これまでα,β-不飽和カルボニル化合物を用いた触媒的不斉マイケル付加反応の開発がなされてきた。α,β-不飽和カルボニル化合物の中でもα,β-不飽和エステルは求電子性が低いため[1]、当該反応において挑戦的な基質とされてきた。

これまでにエノラートを求核剤とする不斉マイケル付加反応として、不斉相間移動触媒[2a]、不斉ブレンステッド塩基[2b]、そしてエナミン経由型の不斉有機触媒[2c]を用いる手法が報告されてきた(図1A)。

一方で、シリルエノールエーテルおよびシリルケテンアセタールを求核剤に用いる触媒的不斉向山–マイケル反応の報告はない。シリルエノールエーテルの求核性が低いため、如何にα,β-不飽和エステルの求電子性を活性化しつつ立体選択性を制御するかが重要となる。

オキサザボロリジン誘導体をルイス酸触媒に用いてα,β-不飽和エステルを活性化する不斉反応が知られるが、フルオロアルキルエステルなどの活性なエステルを用いる必要がある[3]。原子効率および工程数の観点からメチルエステルなどの一般的なアルキルエステルを直接活性化できる効率的な不斉触媒の開発が望まれる。

今回Listらは、独自に開発した強力なブレンステッド酸であるイミドジホスホリミダート(IDPi)とシリルケテンアセタール(SKA)から生成するシリリウムルイス酸を不斉触媒として、SKAとα,β-不飽和メチルエステルとの不斉向山–マイケル反応の開発に成功したので紹介する(図1B)。

図1. α,β-不飽和エステルへの不斉マイケル付加反応

 

論文著者の紹介

研究者:Benjamin List
1993 Diploma, Free University of Berlin
1997 Ph.D., University of FrankFurt (Prof. J. Mulzer)
1997-1998 Posdoc, Scripps Research Institute, USA (Prof. R. Lerner)
1999-2003 Assistant Professor (Tenure Track), Scripps Research Institute, USA
2003-2005 Group Leader at Max Planck Institute for Coal Research
2005- Director at Max Planck Institute for Coal Research

研究内容:有機触媒反応および不斉有機触媒の開発

論文の概要

本反応は触媒量のIDPi存在下、α,β-不飽和メチルエステルとSKAをシクロヘキサン溶媒中0 °Cで反応させることにより、高エナンチオ選択的にマイケル付加が進行する。非脱水溶媒を用いた場合や空気下であっても反応は円滑に進行する。α,β-不飽和メチルエステルとしては、様々な桂皮酸メチルエステル類や3-アルキルアクリル酸メチルが反応に適用可能である(図2A)。また、本反応はメチルエステルにのみ適用可能であり、その他のエステルを用いた際は収率およびエナンチオ選択性が著しく低下する。求核剤としては環状SKAや一置換SKAも用いることができる。

著者らは以下のような機構で反応が進行すると推定している(図2B)。始めにSKAがIDPiによりプロトン化され、シリル化エステルAを形成する。続いてケイ素移動によりキラルイオン対Bが生成することでα,β-不飽和エステルが活性化される。これが求核剤であるSKAと反応することでジシリル化中間体Cを与える。最後に再びケイ素移動によりDが得られる。Dの生成はNMR測定により支持されている。反応をメタノールで停止することによりDは目的の1,5-ジエステル化合物へと変換される。

以上、ブレンステッド酸IDPiとSKAを組み合わせたルイス酸を用いたエナンチオ選択的向山–マイケル反応が開発された。本反応が多様な化合物の不斉合成へと応用されていくことを期待したい。

図2. (A) 基質適用範囲 (B) 推定反応機構

参考文献

  1. Jangra, A.; Asahara, H.; Li, Z.; Zipse, C.; Ofial, A.; Mayr, H. J, Am. Chem. Soc. 2017, 139, 13318. DOI: 10.1021/jacs.7b05106
  2. (a)Corey, E. J.; Noe, M.; Xu, F. Tetrahedron Lett. 1998, 39, 5347. DOI: 1016/S0040-4039(98)01067-3 (b)Saito, S.; Tsubogo, T.; Kobayashi, S. J. Am. Chem. Soc. 2007, 129, 5364. DOI: 10.1021/ja0709730 (c) Kang, J.; Carter, R. Org. Lett. 2012, 14, 3178. DOI: 10.1021/ol301272r
  3. Canales, E.; Corey, E. J. J. Am. Chem. Soc. 2007, 129, 12686. DOI: 10.1021/ja0765262
The following two tabs change content below.
山口 研究室
早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. アメリカ化学留学 ”立志編 ーアメリカに行く前に用意…
  2. スイスの博士課程ってどうなの?1〜ヨーロッパの博士課程を知る〜
  3. アラインをパズルのピースのように繋げる!
  4. 第94回日本化学会付設展示会ケムステキャンペーン!Part I
  5. (+)-マンザミンAの全合成
  6. ノーベル化学賞は化学者の手に
  7. 若手研究者vsノーベル賞受賞者 【化学者とは?!編】
  8. (+)-11,11′-Dideoxyverticil…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 液体ガラスのフシギ
  2. 花粉症対策の基礎知識
  3. チン・リン Qing Lin
  4. ジョーンズ酸化 Jones Oxidation
  5. 中皮腫治療薬を優先審査へ
  6. 【追悼企画】鋭才有機合成化学者ーProf. David Gin
  7. 「株式会社未来創薬研究所」を設立
  8. 黒田チカ Chika Kuroda
  9. 呉羽化学に課徴金2億6000万円・価格カルテルで公取委
  10. リアル『ドライ・ライト』? ナノチューブを用いた新しい蓄熱分子の設計-後編

関連商品

注目情報

注目情報

最新記事

リチウム金属電池の寿命を短くしている原因を研究者が突き止める

リチウムリオンバッテリー(リチウムイオン二次電池)はPCやスマートフォンなどの電子機器に利用されてい…

研究室でDIY!~エバポ用真空制御装置をつくろう~ ③

さて、前回に引き続いて、「エバポ用真空制御装置の自作」に挑戦しています。前回までの記事では、…

AIによる創薬に新たな可能性 その研究と最新技術に迫る ~米・Insitro社 / 英・ケンブリッジ大学の研究から~

AIの機械学習による創薬が化学業界で注目を集めています。2019年3月に米国サンフランシスコで開催さ…

特長のある豊富な設備:ライトケミカル工業

1. 高粘度撹拌、高温・高圧・高真空に対応可能な反応釜高粘度でも撹拌できる大容量攪拌機と効率用除…

ライトケミカル工業2021年採用情報

当社の技術グループは、20代~30代の若手社員が重要な主要案件を担当しています。広範囲で高レベルな化…

中高生・高専生でも研究が学べる!サイエンスメンタープログラム

研究室に入って本格的な研究を始めるのは、大学4年生からが一般的。でも最近は、中高生が研究に取り組める…

Chem-Station Twitter

PAGE TOP