[スポンサーリンク]

一般的な話題

あなたの体の中の”毒ガス”

[スポンサーリンク]

 

 「毒ガス」と聞いて、皆さんはどのようなことを連想しますか?化学兵器、火山ガスなどの危険で忌避すべきものであるという方がほとんどだと思います。しかし皆さんご存知でしょうか。そんな”毒ガス”があなたの体の中にも存在していることを‥‥。

一酸化窒素

一酸化窒素 (NO)は自動車の排ガスなどに含まれ、光化学スモッグや酸性雨を引き起こす大気汚染物質の一つとされています
一方で、生体内では一酸化窒素合成酵素(NOS)によってL-アルギニンから産生され、殺菌、血管拡張やシグナル伝達などの重要な機能を担っていることがよく知られています。

NO synthesis

図:NOの生合成?L-アルギニン→L-シトルリン+NO

 

爆薬であるニトログリセリンも血中のNO産生を増やすことで、狭心症治療薬として効果を発揮します(→)。

nitroglycerin.gif

 図:ニトログリセリン

一酸化炭素

一酸化炭素 (CO)は酸素よりもはるかにヘモグロビンと結合しやすい性質があり、酸素運搬を阻害して中毒症状を起こします。火気設備の不完全燃焼などで発生し、無色無臭で発生に気付きにくいため、特に冬場にガスストーブなどの暖房器具を使う際には定期的な換気が必要不可欠です。さてそんな危険なCOですが、これも体内で発生します。

CO synthesis

図:ヘムの分解とCO生成

ヘム→ビリベルジン+鉄イオン+CO

 一酸化炭素の標的となるヘムですが、一方でこれがヘムオキシゲナーゼによって分解されるとCOが発生します。COには低酸素を検知して血管拡張を促す機能が報告されており[1]、生理的な意義が明らかになりつつあります。

オゾン

オゾンといえばまずオゾン層を思い浮かべる人が多いと思います。上空の成層圏で層を形成し、人体に有害な紫外線を吸収して地上に降り注ぐ量を減らしてくれています。こうした面で私達の生活に無くてはならないオゾンですが、同時に極めて強い酸化力を持っており人体に対しては有害な毒ガスです。実はこのオゾンも体内で発生するのです[2]。

ozone
図:オゾンの生成 (論文[2]より引用。一部改変)

 マクロファージのミエロペルオキシダーゼ (MPO)などの働きで発生した一重項酸素がIgG抗体の触媒作用によって、オゾンへと変換されます。このオゾンはその酸化力を活かして、病原体の殺菌などに働いているものと考えられています。

 

硫化水素

 硫化水素は火山性ガスとして知られており、所謂「卵の腐った臭い」の正体です。強い臭気と粘膜に対する刺激性、そしてミトコンドリアのシトクロームcオキシダーゼ阻害による急性中毒などの危険性がある毒ガスです。なんとこの硫化水素も体内で発生しています。

hydrogen sulfide

図:硫化水素の生合成

(独立行政法人 国立精神・神経医療研究センター プレスリリース (→)より引用。一部改変)

 硫化水素はL-システインからシスタチオニンβ合成酵素 (CBS)など複数の経路によって生合成されます。硫化水素には組織を酸化ストレスから保護する作用が報告されており、生体の酸化ストレス防御に深く関わっていると考えられます。
近年ではL体ではなくD-システインを基質としたD-アミノ酸酸化酵素 (DAO)を介した経路も発見されており[3]、腎臓の虚血再灌流障害などに対する新たな治療薬として期待されています。

 

生体ガス分子のこれから

これまで紹介したように、昨今の分析技術の飛躍的進歩にともなって低分子のガス分子の生理的役割が明らかになりつつあります【→関連リンク】。近頃ではそうしたガス分子の研究を医療に役立てようという試みがなされています。危険なはずの毒ガスももしかしたら薬になる、そんなことも将来あるかもしれません。

 

外部リンク

 

参考文献

  1.  Hypoxic regulation of the cerebral microcirculation is mediated by a carbon monoxide-sensitive hydrogen sulfide pathway. T. Morikawa et al. Proc. Natl. Acad. Sci. U S A. 109, 4 (2012) doi: 10.1073/pnas.1119658109
  2.  Investigating antibody-catalyzed ozone generation by human neutrophils. B. M. Babior et al. Proc. Natl. Acad. Sci. U S A. 100, 6 (2003) doi: 10.1073/pnas.0530251100
  3. A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. N. Shibuya et al. Nat Commun. 4 (2013) doi: 10.1038/ncomms2371

 

関連書籍

がらがらどん

投稿者の記事一覧

博士後期課程で悪戦苦闘中。専門は栄養生理学や農芸化学で、合成や物性に関しては素人であります。でも構造式を眺めるのは好き。記事については天然物や生体分子についてお伝えしていけたらと思います。 将来は科学コミュニケーションに携われたらと考えていますが、まずは学位奪取を目指して精進します。

関連記事

  1. 第23回ケムステVシンポ『進化を続ける核酸化学』を開催します!
  2. ADC薬基礎編: 着想の歴史的背景と小分子薬・抗体薬との比較
  3. 技あり!マイルドにエーテルを切ってホウ素で結ぶ
  4. ボリルアジドを用いる直接的アミノ化
  5. なぜ傷ついたマジックマッシュルームは青くなるの?
  6. 創薬・医療系ベンチャー支援プログラム”BlockbusterTO…
  7. 留学せずに英語をマスターできるかやってみた(1年目)
  8. 化学者のためのエレクトロニクス講座~フォトレジスト編

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ジピバロイルメタン:Dipivaloylmethane
  2. 大分の高校生が特許を取得!
  3. 株式会社ジーシーってどんな会社?
  4. 年に一度の「事故」のおさらい
  5. 化学者のためのエレクトロニクス入門④ ~プリント基板業界で活躍する化学メーカー編~
  6. アルミニウム Aluminium 最も多い金属元素であり、一円玉やアルミホイルの原料
  7. サクセナ・エヴァンス還元 Saksena-Evans Reduction
  8. ノーベル化学賞・受賞者一覧
  9. 第11回 触媒から生命へー金井求教授
  10. 動的コンビナトリアル化学 Dynamic Combinatorial Chemistry

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2014年4月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

紅麹問題に進展。混入物質を「プベルル酸」と特定か!?

紅麹問題に進展がありました。各新聞社が下記のように報道しています。小林製薬(大阪市)がつ…

【十全化学】新卒採用情報

当社は行動指針の一つとして、「会社と仕事を通じて自己成長を遂げ、仕事を愉しもう!…

【十全化学】核酸医薬のGMP製造への挑戦

「核酸医薬」と聞いて、真っ先に思い起こすのは、COVID-19に対するmRNAワ…

十全化学株式会社ってどんな会社?

私たち十全化学は、医薬品の有効成分である原薬及び重要中間体の製造受託を担っている…

化学者と不妊治療

これは理系の夫視点で書いた、私たち夫婦の不妊治療の体験談です。ケムステ読者で不妊に悩まれている方の参…

リボフラビンを活用した光触媒製品の開発

ビタミン系光触媒ジェンタミン®は、リボフラビン(ビタミンB2)を活用した光触媒で…

紅麹を含むサプリメントで重篤な健康被害、原因物質の特定急ぐ

健康食品 (機能性表示食品) に関する重大ニュースが報じられました。血中コレステ…

ユシロ化学工業ってどんな会社?

1944年の創業から培った技術力と信頼で、こっそりセカイを変える化学屋さん。ユシロ化学の事業内容…

日本薬学会第144年会付設展示会ケムステキャンペーン

日本化学会の年会も終わりましたね。付設展示会キャンペーンもケムステイブニングミキ…

ペプチドのN末端でのピンポイント二重修飾反応を開発!

第 605回のスポットライトリサーチは、中央大学大学院 理工学研究科 応用化学専…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP