[スポンサーリンク]

化学者のつぶやき

最長のヘリセンをつくった

[スポンサーリンク]

高次ヘリセン

ヘリセンはベンゼン環がオルト位で縮環した多環芳香族炭化水素の一つであり、構成するベンゼン環の数n を用いて[n]ヘリセンのように命名します。ベンゼン環の水素同士の立体障害によりらせん形をとるため、不斉炭素を持たないがキラリティを発現する興味深い分子の1つです。

その構造の美しさとユニークさから多くの化学者が研究の対象としてきましたが、nが大きい高次ヘリセンの合成は困難を極めます。特に、[13]ヘリセンより大きいものはベンゼン環が3 層重なった構造になり、中央のベンゼン環は上下に位置するベンゼン環の圧迫により立体的なひずみを解消しにくくなります (図1) 。これまで、1975 年にMartin らによって合成された[14]ヘリセンが最長のヘリセンであり、この記録は40 年間破られることはありませんでした。[1]

しかし最近、東京大学の藤田教授・山形大学の村瀬准教授らによって未踏の[16]ヘリセンが合成され、ヘリセンの最長記録は更新されました。今回はこの合成法について紹介したいと思います。

“One-Step Synthesis of [16]Helicene”

Mori, K.; Murase, T.; Fujita, M. Angew. Chem. Int. Ed. 2015. Early View. DOI: 10.1002/anie.201502436

 

2015-05-25_17-42-54

図1 高次ヘリセンとその合成の困難さ

 

鍵となるヘリセン前駆体

ヘリセンやその類縁体の合成にはいくつかの方法が報告されていますが、最もよく用いられている合成法は、(Z)-スチルベン骨格を前駆体として用いた酸化的光環化反応(Oxidative photocyclization)です。

(Z)-スチルベン骨格が前駆体として好まれる理由としては、この骨格が  Wittig  反応によって容易に合成可能であることや、光によって容易に E/Z 異性化が起こるため  E/Z が混在した状態で光環化が行えることが挙げられます。先に述べた  Martin  らによる[14]ヘリセン合成でもこの骨格による酸化的光環化反応が用いられており、彼らは[3] + [6] + [3][4] + [4] + [4]からそれぞれ合成に成功しています(図 2)。

2015-05-25_17-44-12

図2. 酸化的光環化反応と[14]ヘリセンの合成

一方、[6]+[6]を前駆体とした酸化的光環化反応では[13]ヘリセンを合成できないことが最近報告されていました。[3]

そこで筆者らは、反応前駆体として大きな[n]ヘリセンを用いてそれらを繋げるのではなく、小さな芳香環ユニットを複数の電子環状反応で繋げてヘリセンを合成するほうが効率的であると考えました。特に、[1]+[2]の酸化的光環化反応が選択的に[4]ヘリセンを与えることに注目し  (図 3)、筆者らはサブユニットとして[1][2](ベンゼンとナフタレン)のみを用いたヘリセン合成戦略を立てました。

2015-05-25_17-44-25

図3

 

過去の報告から、  [1]+[1]+[1]または[2]+[2]の組み合わせでは[5]ヘリセンではなく、さらに反応が進行したベンゾペリレンが生成すること、[2]+[1]+[2]では環化反応によってアセン型に縮環してしまうことがわかっています。これらを考慮し、筆者らは前駆体が[2]+[1]+[1]+[2]+[1]+[1]+[2]の配列でなくてはならないと考えました(図 4)。

 

2015-05-25_17-44-41

図4

 

この設計指針の妥当性は、前駆体[2]+[1]+[1]+[2]の酸化的光環化反応によって、[9]ヘリセンが従来の方法と同程度の収率で得られたことから確認できます(図 5)。

 

2015-05-25_17-44-54

図5

 

[16]ヘリセンの合成

筆者らはこの合成指針に従い、Wittig 反応によって[16]ヘリセンの前駆体 1 を合成しました  (図 6)。なお末端にある TIPSO(triisopropylsilyl  ether)は反応前駆体の溶解性を向上させるために導入しています。

2015-05-25_17-45-08

図6

 

前駆体 1 に対して 90ºC で Hg ランプを 48 時間照射することで、TIPSO-[16]ヘリセンが収率 7%で得られました。構造は X 線結晶構造解析によって決定され、予想通りのらせん状の 3 層構造であることが確認されました。また、1H  NMR では芳香族領域にある 2 つのプロトンが大きく高磁場にシフトしており(δ=5.51 と5.78;  図 8-A における Hp と Hq)、これらのプロトンは芳香環上に重なっていることが示唆されました。さらに、図 7 のように 3 段階の変換で TIPSO 基を除去し、無置換の[16]ヘリセンを得ることにも成功しています。無置換[16]ヘリセンの X 線結晶構造は得られていないが、1H NMR と MALDI-TOF MS から化合物を同定しています。(図 8)

 

2015-05-25_17-45-40

図8

 

以上のようにベンゼンとナフタレンという炭素芳香族の基本骨格を適切に配置することで、一段階の酸化的光環化反応でこれまで達成されていない高次ヘリセンの合成に成功しました。なお今回の成果は最長ヘリセンの記録更新だけでなく、光環化による高次ヘリセン合成の前駆体設計に新しい方向性を示したといえます。

ただ最後に、ちょっと気になるところが。タイトルのOne step synthesisってどこからOne stepなんでしょう?未踏化合物の合成なので普通に(First) Synthesis of [16]Heliceneの方が良い気がします。

 

参考文献

  1. Martin, R. H.; Baes, M. Tetrahedron 1975, 31, 2135. DOI: 10.1016/0040-4020(75)80208-0
  2. Gingras, M. Chem. Soc. Rev. 2012, 42, 968. DOI: 10.1039/C2CS35154D
  3. Roose, J.; Achermann, S.; Dumele, O.; Diederich, F. Eur. J. Org. Chem. 2013, 2013, 3223. DOI: 10.1002/ejoc.201300407

 

外部リンク

 

bona

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. シリカゲルはメタノールに溶けるのか?
  2. 触媒表面の化学反応をナノレベルでマッピング
  3. 鍛冶屋はなぜ「鉄を熱いうちに」打つのか?
  4. 第93回日本化学会付設展示会ケムステキャンペーン!Part II…
  5. 工程フローからみた「どんな会社が?」~OLED関連
  6. 2017年(第33回)日本国際賞受賞者 講演会
  7. 「銅触媒を用いた不斉ヒドロアミノ化反応の開発」-MIT Buch…
  8. アジリジンが拓く短工程有機合成

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 不斉アリル位アルキル化反応を利用した有機合成
  2. アセタール還元によるエーテル合成 Ether Synthesis by Reduction of Acetal
  3. Micro Flow Reactorで瞬間的変換を達成する
  4. ジフェニルオクタテトラエン (1,8-diphenyl-1,3,5,7-octatetraene)
  5. 高脂血症薬がウイルス抑制/C型肝炎で厚労省研究班
  6. 化学者のためのエレクトロニクス入門① ~電子回路の歴史編~
  7. 奇跡の素材「グラフェン」を使った世界初のシューズが発売
  8. ハンチュ エステルを用いる水素移動還元 Transfer Hydrogenation with Hantzsch Ester
  9. 研究者のためのCG作成術④(レンダリング編)
  10. 新規作用機序の不眠症治療薬ベルソムラを発売-MSD

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

高分子化学をふまえて「神経のような動きをする」電子素子をつくる

第267回のスポットライトリサーチは、東北大学大学院工学研究科 バイオ工学専攻 三ツ石研究室 助教の…

アルケンのエナンチオ選択的ヒドロアリール化反応

パラジウム触媒を用いたアルケンの還元的Heck型ヒドロアリール化反応が開発された。容易に着脱可能なキ…

第109回―「サステイナブルな高分子材料の創製」Andrew Dove教授

第109回の海外化学者インタビューは、アンドリュー・ダヴ教授です。ワーウィック大学化学科に所属(訳注…

蛍光異方性 Fluorescence Anisotropy

蛍光異方性(fluorescence anisotropy)とは溶液中で回転する分子の回転速…

(–)-Spirochensilide Aの不斉全合成

(–)-Spirochensilide Aの初の不斉全合成が達成された。タングステンを用いたシクロプ…

第108回―「Nature Chemistryの編集長として」Stuart Cantrill博士

第108回の海外化学者インタビューは、スチュアート・カントリル博士です。Nature Chemist…

化学工業で活躍する有機電解合成

かつて化学工業は四大公害病をはじめ深刻な外部不経済をもたらしましたが、現代ではその反省を踏まえ、安全…

細胞内の温度をあるがままの状態で測定する新手法の開発 ~「水分子」を温度計に~

第266回のスポットライトリサーチは、東北大学大学院薬学研究科 中林研究室 修士二年生の杉村 俊紀(…

Chem-Station Twitter

PAGE TOP