[スポンサーリンク]

化学者のつぶやき

金属原子のみでできたサンドイッチ

サンドイッチといっても食べることはできませんのであしからず。今回は、「サンドイッチ型錯体」しかも、すべてが金属で構成されている錯体に関する以下の論文について紹介したいと思います。

“An All-Metal Aromatic Sandwich Complex [Sb3Au3Sb3]3–

Pan, F.-X.; Li, L.-J.; Wang, Y.-J.; Guo, J.-C.; Zhai, H.-J.; Xu, L.; Sun, Z.-M.; J. Am. Chem. Soc. 2015, 137, 10954. DOI: 10.1021/jacs.5b07730

 

ではひとまず、サンドイッチ型錯体の歴史からみていきましょう。

 

サンドイッチ型錯体の歴史

1950年代に発見された最も有名な「サンドイッチ型錯体」はフェロセンです。鉄がシクロペンタジエニルアニオンにサンドイッチのように挟まれている構造をもっています、鉄が具、シクロペンタジエニルアニオンがパンといったところでしょうか。大変美しい構造をもった分子の1つです。

Ferrocene-3D-balls-B

図1 フェロセン(出典:Wikipedia)

 

さて、「サンドイッチ型錯体」は一般に、 「2つの平面分子が中心金属を上下から挟み込むことで形成される錯体」とされています。フェロセンが登場するまでの錯体化学はアクア錯体やアンミン錯体といった,、配位子が中心金属にσ-配位するWerner型が主流でした。 そのため、中心金属に平面型配位子がπ-配位しているフェロセンの配位様式は、多くの化学者の興味をひき, この発見をきっかけに有機金属化学の理論・合成法が急速に発展していきました。

今日に至るまで、様々な構造をもったサンドイッチ型錯体が合成されており、 同時にそれらを用いた応用研究も広く行われています。 その応用分野は電気化学を始めとして、 カップリング反応の触媒配位子やマテリアル、 超分子化学などの非常に広範囲に渡たり、サンドイッチ型錯体の研究は錯体化学の中でも重要な位置を占めています(図2)。

 

2015-09-16_15-20-58

図2. サンドイッチ錯体は大活躍(文献1)

 

このように, サンドイッチ型錯体の多くが「金属原子が2つの芳香環によって挟まれた化合物」として認識されてきました。ところが、 2002年Science誌にこの常識を覆す、 炭素を含まないサンドイッチ型錯体[(P5)Ti] 2-が報告されたのです。[2]

この発見により、それまでのサンドイッチ錯体の概念が拡張され、最近では新奇サンドイッチ型錯体に関する研究がさらに活発に行われています。

そのような背景のもと、今回紹介する論文の著者である中国、長春応用化学研究所のSunらは、すべて金属原子からなる全く新しいサンドイッチ型錯体[Sb3Au3Sb3]3-(1)の合成に成功しました(図2)。

2015-09-16_15-46-00

図2 今回の研究の位置付け

 

[Sb3Au3Sb3]3-の合成・結晶構造

今回の錯体1はK5Sb4と[2.2.2]crypt.のエチレンジアミン溶液にAu(PPh3)Phを加えて合成され、ピリジンを用いて再結晶することで、 対カチオンにK([2,2,2]crypt)]+をもつ塩として単離されました(図3)。 X線結晶構造解析によって構造を決定したところ、 擬D3h対称性を有する三角柱型でした。 これは有機配位子を持たない錯体では初めての報告例となります。 結晶構造に関して, 著者らは今回の錯体の結合長や結合角を、 過去に報告されている錯体と比較しながら考察しています(図 3). 環状Au3とSb3における結合はともに結合交代が小さく、Au–Sb結合は今までに報告されている典型的な錯体におけるAu–Sb結合よりも短い。 また, 実験と理論計算の先行研究からSb3-イオンはオゾンのような折れ曲がり構造(C2v対称)をとる方がエネルギー的に有利であることがわかっていますが[3]、今回の錯体ではSb3-イオンが環状構造をとり, サンドイッチ型錯体を形成しています。 このことから錯体1では環状Sb3-イオンがAu3によって安定化されていることが示唆されました。

2015-09-16_15-47-06

図3 [Sb3Au3Sb3]3-

[Sb3Au3Sb3]3-の電子状態

結合様式に関する考察を行うために、著者らは密度汎関数法(DFT)によって量子化学計算も行っています。 得られた計算結果から結合次数を算出すると, Au–Au結合が0.32, Au–Sb結合は1.09, Sb–Sb結合は1.21でした。 このことからAu–Au結合は通常の2c-2e結合とはかけ離れた、弱い相互作用であるといえます。 また今回の錯体ではSb3部位からAu3部位へ分子内電荷移動が起きていることが計算結果から示唆されており, これは先に述べた「Au3が環状Sb3–イオンを安定化している」という考察を支持しています。この電荷移動は, 図 4のA–Cに示したσ性の相互作用に関わる分子軌道を通じて, 電子供与(Sb3→Au3)または逆供与(Au3→Sb3)が生じていると考えられ、この電荷移動によって共有結合性が高く、 強固なSb–Au結合が形成されていると理解できます。

一方で, 図 4のDに示した3つの軌道(HOMO, HOMO’, HOMO-3)は全体に非局在化しており、電子供与にほとんど関わりません。 軌道解析の結果, これらの軌道は主にSbの5p原子軌道由来であることが分かり, Sb3環上に非局在化したπ軌道であることがわかります。 このπ軌道が芳香族性を持つかどうかはNICS(1)値を算出することで調べられています。 計算の結果, その値は-23.13 ppmであり、ベンゼンのNICS(1)が-29.87 ppmであることを考慮すれば, Sb3環は強い芳香族性を有するといえます。

 

2015-09-16_15-47-57

図4

 

今回の論文で著者らは初めて金属のみからなるサンドイッチ錯体の合成・単離に成功し、X線結晶構造解析から構造を決定しました。 得られた錯体は今までにないユニークな構造をしており、量子計算から結合様式も今までのサンドイッチ型錯体とは大きく異なる性格のものであると考えられます。 今後、 この錯体に関する応用研究や、 さらに全く新しいサンドイッチ型錯体の登場に期待したいと思います。

 

参考文献

  1. (a) Murahashi, T.; Uemura, T.; Kurosawa, H. J. Am. Chem. Soc. 2003, 125, 8436–8437. DOI: 10.1021/ja0358246 (b) Krieck, S.; Gorls, H.; Yu, L.; Reiher, M.; Westerhausen, M. J. Am. Chem. Soc. 2009, 131, 2977–2985. (c) Nakahata, M.; Takashima, Y.; Yamaguchi, H.;Harada, A. Nature Commun. 2011, 2, 511–516. DOI: 10.1021/ja808524y
  2. Urneżǐus, E.; Brennessel, W. W.; Cramer, C. J.; Ellis, J. E.; Schleyer, P. v. R. Science 2002, 295, 832−834. DOI: 10.1126/science.1067325
  3. (a) Hagelberg, F.; Das, T. P.; Weil, K. G. Phys. Chem. A 1998, 102, 4630−4637. (b) Goicoechea, J. M.; Hull, M. W.; Sevov, S. C. J. Am. Chem. Soc. 2007, 129, 7885−7893. DOI: 10.1021/ja071044b

 

関連書籍

 

外部リンク

 

The following two tabs change content below.
bona
愛知で化学を教えています。よろしくお願いします。
bona

最新記事 by bona (全て見る)

関連記事

  1. 2016年JACS Most Read Articles Top…
  2. 第96回日本化学会付設展示会ケムステキャンペーン!Part II…
  3. 糖鎖を直接連結し天然物をつくる
  4. 有機硫黄ラジカル触媒で不斉反応に挑戦
  5. 水素結合水H4O
  6. 最期の病:悪液質
  7. 【書籍】「ルールを変える思考法」から化学的ビジネス理論を学ぶ
  8. シリリウムカルボラン触媒を用いる脱フッ素水素化

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 多様なペプチド化合物群を簡便につくるー創薬研究の新技術ー
  2. Brønsted酸触媒とヒドロシランによるシラFriedel-Crafts反応
  3. ねじれがあるアミド
  4. “結び目”をストッパーに使ったロタキサンの形成
  5. ケミカルジェネティクス chemical genetics
  6. 吉田善一 Zen-ichi Yoshida
  7. 「科学者の科学離れ」ってなんだろう?
  8. カール・ジェラッシ Carl Djerassi
  9. ACD/ChemSketch Freeware 12.0
  10. カルボニル-エン反応(プリンス反応) Carbonyl-Ene Reaction (Prins Reaction)

関連商品

注目情報

注目情報

最新記事

特定の場所の遺伝子を活性化できる新しい分子の開発

ついにスポットライトリサーチも150回。第150回目は理化学研究所 博士研究員の谷口 純一 (たにぐ…

出光・昭和シェル、統合を発表

石油元売り2位の出光興産と4位の昭和シェル石油は10日、2019年4月に経営統合すると正式に発表した…

天然物の全合成研究ーChemical Times特集より

関東化学が発行する化学情報誌「ケミカルタイムズ」。年4回発行のこの無料雑誌の紹介をしています。…

「アジア発メジャー」狙う大陽日酸、欧州市場に参入

大陽日酸は北米に次ぐ成長が見込める欧州市場に参入を果たす。同業の米プラクスエアが欧州で展開する産業ガ…

典型元素触媒による水素を還元剤とする第一級アミンの還元的アルキル化

第149回のスポットライトリサーチは、大阪大学大学院工学研究科 博士後期課程3年の木下 拓也 (きの…

有機合成化学協会誌7月号:ランドリン全合成・分子間interrupted Pummerer反応・高共役拡張ポルフィリノイド・イナミド・含フッ素ビニルスルホニウム塩・ベンゾクロメン

化学協会が発行する有機合成化学協会誌、2018年7月号がオンライン公開されました。今月号のキ…

Chem-Station Twitter

PAGE TOP