[スポンサーリンク]

化学者のつぶやき

金属原子のみでできたサンドイッチ

[スポンサーリンク]

サンドイッチといっても食べることはできませんのであしからず。今回は、「サンドイッチ型錯体」しかも、すべてが金属で構成されている錯体に関する以下の論文について紹介したいと思います。

“An All-Metal Aromatic Sandwich Complex [Sb3Au3Sb3]3–

Pan, F.-X.; Li, L.-J.; Wang, Y.-J.; Guo, J.-C.; Zhai, H.-J.; Xu, L.; Sun, Z.-M.; J. Am. Chem. Soc. 2015, 137, 10954. DOI: 10.1021/jacs.5b07730

 

ではひとまず、サンドイッチ型錯体の歴史からみていきましょう。

 

サンドイッチ型錯体の歴史

1950年代に発見された最も有名な「サンドイッチ型錯体」はフェロセンです。鉄がシクロペンタジエニルアニオンにサンドイッチのように挟まれている構造をもっています、鉄が具、シクロペンタジエニルアニオンがパンといったところでしょうか。大変美しい構造をもった分子の1つです。

Ferrocene-3D-balls-B

図1 フェロセン(出典:Wikipedia)

 

さて、「サンドイッチ型錯体」は一般に、 「2つの平面分子が中心金属を上下から挟み込むことで形成される錯体」とされています。フェロセンが登場するまでの錯体化学はアクア錯体やアンミン錯体といった,、配位子が中心金属にσ-配位するWerner型が主流でした。 そのため、中心金属に平面型配位子がπ-配位しているフェロセンの配位様式は、多くの化学者の興味をひき, この発見をきっかけに有機金属化学の理論・合成法が急速に発展していきました。

今日に至るまで、様々な構造をもったサンドイッチ型錯体が合成されており、 同時にそれらを用いた応用研究も広く行われています。 その応用分野は電気化学を始めとして、 カップリング反応の触媒配位子やマテリアル、 超分子化学などの非常に広範囲に渡たり、サンドイッチ型錯体の研究は錯体化学の中でも重要な位置を占めています(図2)。

 

2015-09-16_15-20-58

図2. サンドイッチ錯体は大活躍(文献1)

 

このように, サンドイッチ型錯体の多くが「金属原子が2つの芳香環によって挟まれた化合物」として認識されてきました。ところが、 2002年Science誌にこの常識を覆す、 炭素を含まないサンドイッチ型錯体[(P5)Ti] 2-が報告されたのです。[2]

この発見により、それまでのサンドイッチ錯体の概念が拡張され、最近では新奇サンドイッチ型錯体に関する研究がさらに活発に行われています。

そのような背景のもと、今回紹介する論文の著者である中国、長春応用化学研究所のSunらは、すべて金属原子からなる全く新しいサンドイッチ型錯体[Sb3Au3Sb3]3-(1)の合成に成功しました(図2)。

2015-09-16_15-46-00

図2 今回の研究の位置付け

 

[Sb3Au3Sb3]3-の合成・結晶構造

今回の錯体1はK5Sb4と[2.2.2]crypt.のエチレンジアミン溶液にAu(PPh3)Phを加えて合成され、ピリジンを用いて再結晶することで、 対カチオンにK([2,2,2]crypt)]+をもつ塩として単離されました(図3)。 X線結晶構造解析によって構造を決定したところ、 擬D3h対称性を有する三角柱型でした。 これは有機配位子を持たない錯体では初めての報告例となります。 結晶構造に関して, 著者らは今回の錯体の結合長や結合角を、 過去に報告されている錯体と比較しながら考察しています(図 3). 環状Au3とSb3における結合はともに結合交代が小さく、Au–Sb結合は今までに報告されている典型的な錯体におけるAu–Sb結合よりも短い。 また, 実験と理論計算の先行研究からSb3-イオンはオゾンのような折れ曲がり構造(C2v対称)をとる方がエネルギー的に有利であることがわかっていますが[3]、今回の錯体ではSb3-イオンが環状構造をとり, サンドイッチ型錯体を形成しています。 このことから錯体1では環状Sb3-イオンがAu3によって安定化されていることが示唆されました。

2015-09-16_15-47-06

図3 [Sb3Au3Sb3]3-

[Sb3Au3Sb3]3-の電子状態

結合様式に関する考察を行うために、著者らは密度汎関数法(DFT)によって量子化学計算も行っています。 得られた計算結果から結合次数を算出すると, Au–Au結合が0.32, Au–Sb結合は1.09, Sb–Sb結合は1.21でした。 このことからAu–Au結合は通常の2c-2e結合とはかけ離れた、弱い相互作用であるといえます。 また今回の錯体ではSb3部位からAu3部位へ分子内電荷移動が起きていることが計算結果から示唆されており, これは先に述べた「Au3が環状Sb3–イオンを安定化している」という考察を支持しています。この電荷移動は, 図 4のA–Cに示したσ性の相互作用に関わる分子軌道を通じて, 電子供与(Sb3→Au3)または逆供与(Au3→Sb3)が生じていると考えられ、この電荷移動によって共有結合性が高く、 強固なSb–Au結合が形成されていると理解できます。

一方で, 図 4のDに示した3つの軌道(HOMO, HOMO’, HOMO-3)は全体に非局在化しており、電子供与にほとんど関わりません。 軌道解析の結果, これらの軌道は主にSbの5p原子軌道由来であることが分かり, Sb3環上に非局在化したπ軌道であることがわかります。 このπ軌道が芳香族性を持つかどうかはNICS(1)値を算出することで調べられています。 計算の結果, その値は-23.13 ppmであり、ベンゼンのNICS(1)が-29.87 ppmであることを考慮すれば, Sb3環は強い芳香族性を有するといえます。

 

2015-09-16_15-47-57

図4

 

今回の論文で著者らは初めて金属のみからなるサンドイッチ錯体の合成・単離に成功し、X線結晶構造解析から構造を決定しました。 得られた錯体は今までにないユニークな構造をしており、量子計算から結合様式も今までのサンドイッチ型錯体とは大きく異なる性格のものであると考えられます。 今後、 この錯体に関する応用研究や、 さらに全く新しいサンドイッチ型錯体の登場に期待したいと思います。

 

参考文献

  1. (a) Murahashi, T.; Uemura, T.; Kurosawa, H. J. Am. Chem. Soc. 2003, 125, 8436–8437. DOI: 10.1021/ja0358246 (b) Krieck, S.; Gorls, H.; Yu, L.; Reiher, M.; Westerhausen, M. J. Am. Chem. Soc. 2009, 131, 2977–2985. (c) Nakahata, M.; Takashima, Y.; Yamaguchi, H.;Harada, A. Nature Commun. 2011, 2, 511–516. DOI: 10.1021/ja808524y
  2. Urneżǐus, E.; Brennessel, W. W.; Cramer, C. J.; Ellis, J. E.; Schleyer, P. v. R. Science 2002, 295, 832−834. DOI: 10.1126/science.1067325
  3. (a) Hagelberg, F.; Das, T. P.; Weil, K. G. Phys. Chem. A 1998, 102, 4630−4637. (b) Goicoechea, J. M.; Hull, M. W.; Sevov, S. C. J. Am. Chem. Soc. 2007, 129, 7885−7893. DOI: 10.1021/ja071044b

 

関連書籍

[amazonjs asin=”0632041625″ locale=”JP” title=”Metallocenes: An Introduction to Sandwich Complexes”]

 

外部リンク

 

Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 投票!2018年ノーベル化学賞は誰の手に!?
  2. 第66回「物質の宇宙:未知の化合物を追い求めて」山本 隆文 准教…
  3. トンネル効果が支配する有機化学反応
  4. 光エネルギーによって二酸化炭素を変換する光触媒の開発
  5. 東日本大震災から1年
  6. 光触媒反応用途の青色LED光源を比較してみた【2020/8/11…
  7. 東京大学大学院理学系研究科化学専攻 大学院入試情報
  8. 有機合成化学協会誌2020年5月号:特集号 ニューモダリティ;有…

注目情報

ピックアップ記事

  1. オレキシン受容体拮抗薬
  2. 2017年12月14日開催: 化学企業4社によるプレミアムセミナー
  3. 第77回―「エネルギーと生物学に役立つ無機ナノ材料の創成」Catherine Murphy教授
  4. 井口 洋夫 Hiroo Inokuchi
  5. リビングラジカル重合ガイドブック -材料設計のための反応制御-
  6. ヘメツバーガー インドール合成 Hemetsberger Indole Synthesis
  7. 「決断できる人」がしている3つのこと
  8. ムスカリン muscarine
  9. 理工系のAI英作文術
  10. 文具に凝るといふことを化学者もしてみむとてするなり : ② 「ポスト・イット アドバンス」

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年9月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

細谷 昌弘 Masahiro HOSOYA

細谷 昌弘(ほそや まさひろ, 19xx年xx月xx日-)は、日本の創薬科学者である。塩野義製薬株式…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP