[スポンサーリンク]

化学者のつぶやき

金属原子のみでできたサンドイッチ

[スポンサーリンク]

サンドイッチといっても食べることはできませんのであしからず。今回は、「サンドイッチ型錯体」しかも、すべてが金属で構成されている錯体に関する以下の論文について紹介したいと思います。

“An All-Metal Aromatic Sandwich Complex [Sb3Au3Sb3]3–

Pan, F.-X.; Li, L.-J.; Wang, Y.-J.; Guo, J.-C.; Zhai, H.-J.; Xu, L.; Sun, Z.-M.; J. Am. Chem. Soc. 2015, 137, 10954. DOI: 10.1021/jacs.5b07730

 

ではひとまず、サンドイッチ型錯体の歴史からみていきましょう。

 

サンドイッチ型錯体の歴史

1950年代に発見された最も有名な「サンドイッチ型錯体」はフェロセンです。鉄がシクロペンタジエニルアニオンにサンドイッチのように挟まれている構造をもっています、鉄が具、シクロペンタジエニルアニオンがパンといったところでしょうか。大変美しい構造をもった分子の1つです。

Ferrocene-3D-balls-B

図1 フェロセン(出典:Wikipedia)

 

さて、「サンドイッチ型錯体」は一般に、 「2つの平面分子が中心金属を上下から挟み込むことで形成される錯体」とされています。フェロセンが登場するまでの錯体化学はアクア錯体やアンミン錯体といった,、配位子が中心金属にσ-配位するWerner型が主流でした。 そのため、中心金属に平面型配位子がπ-配位しているフェロセンの配位様式は、多くの化学者の興味をひき, この発見をきっかけに有機金属化学の理論・合成法が急速に発展していきました。

今日に至るまで、様々な構造をもったサンドイッチ型錯体が合成されており、 同時にそれらを用いた応用研究も広く行われています。 その応用分野は電気化学を始めとして、 カップリング反応の触媒配位子やマテリアル、 超分子化学などの非常に広範囲に渡たり、サンドイッチ型錯体の研究は錯体化学の中でも重要な位置を占めています(図2)。

 

2015-09-16_15-20-58

図2. サンドイッチ錯体は大活躍(文献1)

 

このように, サンドイッチ型錯体の多くが「金属原子が2つの芳香環によって挟まれた化合物」として認識されてきました。ところが、 2002年Science誌にこの常識を覆す、 炭素を含まないサンドイッチ型錯体[(P5)Ti] 2-が報告されたのです。[2]

この発見により、それまでのサンドイッチ錯体の概念が拡張され、最近では新奇サンドイッチ型錯体に関する研究がさらに活発に行われています。

そのような背景のもと、今回紹介する論文の著者である中国、長春応用化学研究所のSunらは、すべて金属原子からなる全く新しいサンドイッチ型錯体[Sb3Au3Sb3]3-(1)の合成に成功しました(図2)。

2015-09-16_15-46-00

図2 今回の研究の位置付け

 

[Sb3Au3Sb3]3-の合成・結晶構造

今回の錯体1はK5Sb4と[2.2.2]crypt.のエチレンジアミン溶液にAu(PPh3)Phを加えて合成され、ピリジンを用いて再結晶することで、 対カチオンにK([2,2,2]crypt)]+をもつ塩として単離されました(図3)。 X線結晶構造解析によって構造を決定したところ、 擬D3h対称性を有する三角柱型でした。 これは有機配位子を持たない錯体では初めての報告例となります。 結晶構造に関して, 著者らは今回の錯体の結合長や結合角を、 過去に報告されている錯体と比較しながら考察しています(図 3). 環状Au3とSb3における結合はともに結合交代が小さく、Au–Sb結合は今までに報告されている典型的な錯体におけるAu–Sb結合よりも短い。 また, 実験と理論計算の先行研究からSb3-イオンはオゾンのような折れ曲がり構造(C2v対称)をとる方がエネルギー的に有利であることがわかっていますが[3]、今回の錯体ではSb3-イオンが環状構造をとり, サンドイッチ型錯体を形成しています。 このことから錯体1では環状Sb3-イオンがAu3によって安定化されていることが示唆されました。

2015-09-16_15-47-06

図3 [Sb3Au3Sb3]3-

[Sb3Au3Sb3]3-の電子状態

結合様式に関する考察を行うために、著者らは密度汎関数法(DFT)によって量子化学計算も行っています。 得られた計算結果から結合次数を算出すると, Au–Au結合が0.32, Au–Sb結合は1.09, Sb–Sb結合は1.21でした。 このことからAu–Au結合は通常の2c-2e結合とはかけ離れた、弱い相互作用であるといえます。 また今回の錯体ではSb3部位からAu3部位へ分子内電荷移動が起きていることが計算結果から示唆されており, これは先に述べた「Au3が環状Sb3–イオンを安定化している」という考察を支持しています。この電荷移動は, 図 4のA–Cに示したσ性の相互作用に関わる分子軌道を通じて, 電子供与(Sb3→Au3)または逆供与(Au3→Sb3)が生じていると考えられ、この電荷移動によって共有結合性が高く、 強固なSb–Au結合が形成されていると理解できます。

一方で, 図 4のDに示した3つの軌道(HOMO, HOMO’, HOMO-3)は全体に非局在化しており、電子供与にほとんど関わりません。 軌道解析の結果, これらの軌道は主にSbの5p原子軌道由来であることが分かり, Sb3環上に非局在化したπ軌道であることがわかります。 このπ軌道が芳香族性を持つかどうかはNICS(1)値を算出することで調べられています。 計算の結果, その値は-23.13 ppmであり、ベンゼンのNICS(1)が-29.87 ppmであることを考慮すれば, Sb3環は強い芳香族性を有するといえます。

 

2015-09-16_15-47-57

図4

 

今回の論文で著者らは初めて金属のみからなるサンドイッチ錯体の合成・単離に成功し、X線結晶構造解析から構造を決定しました。 得られた錯体は今までにないユニークな構造をしており、量子計算から結合様式も今までのサンドイッチ型錯体とは大きく異なる性格のものであると考えられます。 今後、 この錯体に関する応用研究や、 さらに全く新しいサンドイッチ型錯体の登場に期待したいと思います。

 

参考文献

  1. (a) Murahashi, T.; Uemura, T.; Kurosawa, H. J. Am. Chem. Soc. 2003, 125, 8436–8437. DOI: 10.1021/ja0358246 (b) Krieck, S.; Gorls, H.; Yu, L.; Reiher, M.; Westerhausen, M. J. Am. Chem. Soc. 2009, 131, 2977–2985. (c) Nakahata, M.; Takashima, Y.; Yamaguchi, H.;Harada, A. Nature Commun. 2011, 2, 511–516. DOI: 10.1021/ja808524y
  2. Urneżǐus, E.; Brennessel, W. W.; Cramer, C. J.; Ellis, J. E.; Schleyer, P. v. R. Science 2002, 295, 832−834. DOI: 10.1126/science.1067325
  3. (a) Hagelberg, F.; Das, T. P.; Weil, K. G. Phys. Chem. A 1998, 102, 4630−4637. (b) Goicoechea, J. M.; Hull, M. W.; Sevov, S. C. J. Am. Chem. Soc. 2007, 129, 7885−7893. DOI: 10.1021/ja071044b

 

関連書籍

 

外部リンク

 

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. ラジカルonボロンでフロンのクロロをロックオン
  2. ケムステ版・ノーベル化学賞候補者リスト【2018年版】
  3. 第24回ケムステVシンポ「次世代有機触媒」を開催します!
  4. マイクロ波の技術メリット・事業メリットをお伝えします!/マイクロ…
  5. 化学工場災害事例 ~爆発事故に学ぶ~
  6. 水素製造に太陽光エネルギーを活用 -エタノールから水素を獲得し水…
  7. 特許の基礎知識(3) 方法特許に注意! カリクレイン事件の紹介…
  8. 【書籍】『これから論文を書く若者のために』

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 製薬会社のテレビCMがステキです
  2. 若手研究者に朗報!? Reaxys Prizeに応募しよう
  3. アルツハイマー原因物質、緑茶成分に抑制機能・埼玉医大など
  4. 奇跡の素材「グラフェン」を使った世界初のシューズが発売
  5. アクセラレーションプログラム 「BRAVE 2021 Spring」 参加チームのエントリー受付中!(5/10〆切)
  6. アルブライト・ゴールドマン酸化 Albright-Goldman Oxidation
  7. 有機化学系ラボで役に立つ定番グッズ?100均から簡単DIYまで
  8. シグマトロピー転位によるキラルα-アリールカルボニルの合成法
  9. 米FDA立て続けに抗肥満薬承認:Qsymia承認取得
  10. 第94回日本化学会付設展示会ケムステキャンペーン!Part II

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年9月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

カルボン酸β位のC–Hをベターに臭素化できる配位子さん!

カルボン酸のb位C(sp3)–H結合を直接臭素化できるイソキノリン配位子が開発された。イソキノリンに…

【12月開催】第十四回 マツモトファインケミカル技術セミナー   有機金属化合物 オルガチックスの性状、反応性とその用途

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

保護基の使用を最小限に抑えたペプチド伸長反応の開発

第584回のスポットライトリサーチは、東京大学大学院 薬学系研究科 有機合成化学教室(金井研究室)の…

【ナード研究所】新卒採用情報(2025年卒)

NARDでの業務は、「研究すること」。入社から、30代・40代・50代……

書類選考は3分で決まる!面接に進める人、進めない人

人事担当者は面接に進む人、進まない人をどう判断しているのか?転職活動中の方から、…

期待度⭘!サンドイッチ化合物の新顔「シクロセン」

π共役系配位子と金属が交互に配位しながら環を形成したサンドイッチ化合物の合成が達成された。嵩高い置換…

塩基が肝!シクロヘキセンのcis-1,3-カルボホウ素化反応

ニッケル触媒を用いたシクロヘキセンの位置および立体選択的なカルボホウ素化反応が開発された。用いる塩基…

中国へ行ってきました 西安・上海・北京編①

2015年(もう8年前ですね)、中国に講演旅行に行った際に記事を書きました(実は途中で断念し最後まで…

アゾ重合開始剤の特徴と選び方

ラジカル重合はビニルモノマーなどの重合に用いられる方法で、開始反応、成長反応、停止反応を素反応とする…

先端事例から深掘りする、マテリアルズ・インフォマティクスと計算科学の融合

開催日:2023/12/20 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP