[スポンサーリンク]

化学者のつぶやき

イミデートラジカルを経由するアルコールのβ位選択的C-Hアミノ化反応

[スポンサーリンク]

オハイオ州立大学・David A. Nagibらは、脂肪族アルコールのラジカル関与型β位選択的C(sp3)-Hアミノ化反応を達成した。トリクロロイミデートからアミニルラジカルを生成させ、リレー型1,5–水素移動(HAT)過程を通じてβ位選択的に炭素ラジカルを生じさせる過程が鍵である。

“Directed β C−H Amination of Alcohols via Radical Relay Chaperones”
Wappes, E. A.; Nakafuku, K. M.; Nagib, D. A.* J. Am. Chem. Soc. 2017, 139, 10204. DOI: 10.1021/jacs.7b05214

問題設定と解決した点

βアミノアルコールの合成法はアルケンの2官能基化[1]など古典的な方法がいくつか知られているが、アルコールのβ位C(sp3)-H結合を直接アミノ化してそれを合成する方法は例が少ない。ロジウムもしくは銀ナイトレニド活性種を用いてβ位C-Hアミノ化を行った報告は知られているが、その立体規制を理由に、γ-アミノ化生成物を与えるものが主である[2]。
著者らは窒素ラジカル起点の1,5-HAT過程に着目し、遠隔位C-Hアミノ化を実現した。アルコールβ位へとアミノ基を選択的に導入できることが特徴である。

技術や手法のキモ

一番のキモは窒素ラジカル源としてイミデートを選択したことにある。冒頭図のとおり6員環遷移状態をとることから、選択性の制御も完璧に行える。イミデートから生成するラジカルのHAT過程は過去に報告例がない。アミナール構造では窒素ラジカル生成時にβ開裂が競合するため制御が困難である。
DFT計算によりSOMOエネルギーも求めているが、置換基によってその値が大きく変わる。一方でどのイミデートにおいても、N-H結合の解離エネルギー(BDE)はおよそ100 ± 1 kcal/molと計算される。これは大抵のsp3C-H結合を切断するに十分な強さを持っている。
後述するとおり、構造によってHAT過程の進行度に大きく差が出るので、HAT過程はBDE値では無くSOMOエネルギーに大きく依存するものと考察されている。

主張の有効性検証

①イミデート部位・反応条件の最適化

2-フェニルエタノールを原料として、置換基を変更した各種イミデートを合成し、IOAc(= NaI + PhI(OAc)2)、蛍光灯照射で反応をかけたところ、トリクロロアセトイミデートを用いる場合に、ベンジル位C-Hアミノ化反応が定量的に進行することがすることが明らかとなった。ベンゾイルイミデートでも中程度で反応が進行する。

脂肪鎖アルコールを原料とする場合には、より求核性の高いベンゾイルイミデートを用いるとβ位アミノ化が比較的高収率に進行する(トリクロロアセトイミデートでは求核性が低いのでオキサゾリンの閉環が起こらない)。

速度論的同位体効果の測定によって、HAT過程が律速段階であることも確認している。

②基質一般性の検証

ベンジル位・アリル位C-Hアミノ化=トリクロロアセトイミデート、3級・2級・1級C-Hアミノ化=ベンゾイルイミデート を用いて検討。光学活性な3級炭素を持つアルコールを用いると、完全なラセミ化が進行する。このことから中間体は平面ラジカルもしくは、カチオン経由と考えられる。

議論すべき点

  • イミデートの原料合成も含めてone-potで全てが行えるようになれば、もっと有用性が高まるかと思われる。立体障害があるとイミデートの合成が難しくなるのは難点。
  • アルコールに引っかける構造を本論文中では「ラジカルリレーシャペロン」と名付けている。この部分を触媒化したり、より遠隔位のC-H変換にも汎用性の高い構造を設計できるようになれば面白い。

次に読むべき論文は?

  • Munizらによって、Tsアミド形成→I2―光触媒―酸素を用いる触媒的C-Hアミノ化(ピロリジン合成)が最近達成されている[3]。これとNagibらの前報告[4]を参考にして本系を改良すれば、酸化剤の触媒化も可能になるかも知れない。

参考論文

  1. (a) Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96, 835. DOI: 10.1021/cr9500038 (b) Bergmeier, S. C. Tetrahedron 2000, 56, 2561. doi:10.1016/S0040-4020(00)00149-6 (c) Karjalainen, O. K.; Koskinen, A. M. P. Org. Biomol. Chem. 2012, 10, 4311. doi:10.1039/C2OB25357G
  2. (a) Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 417. doi:10.1038/nature06485 (b) Roizen, J. L.; Harvey, M. E.; Du Bois, J. Acc. Chem. Res. 2012, 45, 911. DOI: 10.1021/ar200318q (c) Jeffrey, J. L.; Sarpong, R. Chem. Sci. 2013, 4, 4092. doi:10.1039/C3SC51420J
  3. Becker, P.; Duhamel, T.; Stein, C. J.; Reiher, M.; Muniz, K. Angew. Chem. Int. Ed. 2017, 56, 8004. DOI: 10.1002/anie.201703611
  4. Wappes, E. A.; Fosu, S. C.; Chopko, T. C.; Nagib, D. A. Angew. Chem. Int. Ed. 2016, 55, 9974. DOI: 10.1002/anie.201604704
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. マテリアルズ・インフォマティクスにおける高次元ベイズ最適化の活用…
  2. 天然有機化合物のNMRデータベース「CH-NMR-NP」
  3. 「進化分子工学によってウイルス起源を再現する」ETH Zuric…
  4. 有機レドックスフロー電池 (ORFB)の新展開:オリゴマー活物質…
  5. 燃えないカーテン
  6. プロ格闘ゲーマーが有機化学Youtuberをスポンサー!?
  7. ホウ素化反応の常識を覆し分岐型アルケンの製造工程を大幅短縮
  8. 3Mとはどんな会社? 2021年版

注目情報

ピックアップ記事

  1. A値(A value)
  2. 1st Maruoka Conference on the Frontier of Organic Synthesis and Catalysis
  3. 米化学大手デュポン、EPAと和解か=新生児への汚染めぐり
  4. 高分解能顕微鏡の進展:化学結合・電子軌道の観測から、元素種の特定まで
  5. 科学英語の書き方とプレゼンテーション (増補)
  6. 元素記号に例えるなら何タイプ? 高校生向け「起業家タイプ診断」
  7. 10種類のスパチュラを試してみた
  8. ドラッグデザインにおいてのメトキシ基
  9. 水素化トリ(sec-ブチル)ホウ素リチウム/ナトリウム/カリウム L/N/K-Selectride
  10. 東京化成工業がケムステVシンポに協賛しました

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年12月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP