[スポンサーリンク]

スポットライトリサーチ

配位子保護金属クラスターを用いた近赤外―可視光変換

[スポンサーリンク]

第315回のスポットライトリサーチは、立教大学理学部・新堀佳紀 助教にお願いしました。

近年エネルギー化学の文脈から注目される概念に「フォトン・アップコンバージョン」があります。2つの光子がもつエネルギーを合わせてより高い光子エネルギー1つへと変換する現象です。今回の報告では、銀クラスターがそのアップコンバージョン増感剤として活用可能であることが初めて実証されました。Angew. Chem. Int. Ed.誌 原著論文・プレスリリースに公開されています。

“Single Platinum Atom Doping to Silver Clusters Enables Near-Infrared-to-Blue Photon Upconversion”
Niihori, Y.; Wada, Y.; Mitsui, M. Angew. Chem. Int. Ed. 2021, 60, 2822. doi:10.1002/anie.202013725

研究室を主宰されている三井 正明 教授から、新堀さんについて以下のコメントを頂いています。まだまだ面白い結果を沢山出してくれそうな様子がうかがえますね!今回もインタビューをお楽しみください!

 新堀佳紀さんには、液相中における配位子保護金属クラスターの精密合成のスペシャリストとして、2017年から私の研究室に加わってもらっています。クラスター合成に関する確かな技術と豊富な経験に基づいて妥協なく黙々と研究を進めてくれています。彼と金属クラスターに関する研究をスタートさせた当初は、クラスターの電子励起状態の特性、特に発光性にフォーカスした研究を行っていましたが、当時から計画していた「金属クラスターを光アップコンバージョンの三重項増感剤として活用する研究」が最近軌道に乗り始め、現在は大きく花開こうとしています。今回紹介されている内容はその最初の例となるもので、コロナ禍で研究活動が非常に制限された中、新堀さんが多くの時間を費やして進めてくれた研究です。最終的に受理された論文に仕上がるまでに多くの検証実験と(オンラインでの)ディスカッションを行いましたので、新堀さんにとっても(もちろん私にとっても)想い入れの大変深い研究になったと思います。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

増感剤と発光体の二種類の分子を用いた三重項-三重項消滅光アップコンバージョン(TTA-UC)は太陽光程度の弱い近赤外光から可視光を生み出すことが可能で、太陽電池や光触媒などの高効率化をもたらす技術として注目されています(図1)。
本研究ではチオラート配位子に保護された純銀クラスターおよびその白金1原子置換体MAg24(SR)18 (M = Ag, Pt)をTTA-UCの新規増感剤として用い、両者のTTA-UCの性能を評価しました(図1)。その結果、これらのクラスターは重原子で構成されておりほぼ類似した幾何構造を有しているにもかかわらず、Ag13コアの中心をPtに置き換えるだけでTTA-UC効率が約220倍も高効率化することを発見しました(図2)。様々な解析からこの原因はPt原子がAg13コアにドープされることでコアの項間交差が促進するためだということを突き止めました。

図1.溶液中でのTTA-UCの反応過程(左)と本研究で用いた新規増感剤(右).

図2. PtAg24(SR)18とペリレンを混合した試料溶液(左)と、PtAg24(SR)18とTIPS-アントラセンの混合溶液を乾燥させた固体試料(右)。自然光照射時あるいは785 nmの励起光照射時の発光の様子.

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

これまで様々な研究グループにより金属クラスターの励起状態には三重項性が含まれていることが報告されてきましたが、実際にどの程度の励起三重項状態が形成されているかは実験的に明らかにされてきませんでした。一方、TTA-UCは複数の素過程からなる複雑な反応ではありますが各素過程の量子収率を実験的に評価することができ、最終的なTTA-UCの効率はこれら素過程の量子収率の積であらわされます。そこで、TTA-UCに関わる量子収率のうちクラスターの三重項生成がどの程度の効率で起こっているかを未知パラメータ―として実験で得られた各量子収率から逆算する方法を思いつきました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

金属クラスターの分光学的な研究から金属クラスターの光励起後の緩和モデルがいくつか提唱されていますが、既存のモデルでは今回の実験結果を合理的に説明することができませんでした。そこで、三井教授と何度も検討を重ね、コアとステープルそれぞれの励起一重項と三重項状態を取り入れた新しい励起緩和モデルを構築し、実験結果を合理的に説明することができました。この新しいモデルを使い、Pt原子のドーピングによりコアのISCが加速しているということを突き止めました。

Q4. 将来は化学とどう関わっていきたいですか?

現在、金属クラスターは触媒などへの応用が期待され精力的に研究されていますが、TTA-UCの三重項増感剤としての応用は今回が初めてです。配位子保護金属クラスターには本研究で取り扱ったものの他にもサイズや組成が異なる多種多様なものが存在し、幅広い波長の近赤外光を吸収することができるものが多く存在します。今後は金属クラスターの三重項増感剤としての可能性を探りつつ、金属クラスターの励起状態の解明に取り組みたいと考えています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

学生の読者の方へ:研究活動において指導教員に言われたことを行えば確かに結果は出ます。しかし、本当に身につくのは自身が習得したスキルをいかに利用して新しいことを見出すかだと思います。確かにそれは難しいことだとは思いますが、自分には無理だとは思わず何度でも挑戦してほしいと思います。「試しにやってみた」でだれも予想もしていなかった素晴らしい成果を出せることだってあります。学生の皆さんには常にチャレンジャーであり続けてほしいと思います。
本研究はJSPS、住友財団の支援のもとで行われました。この場を借りて厚く御礼申し上げます。また、本研究成果を発信する機会を与えてくださったChem-Stationのスタッフの方々にも深く感謝いたします。

研究者の略歴

名前:新堀 佳紀(にいほり よしき)
所属:立教大学 理学部 三井研究室 助教
研究テーマ:金属クラスターの励起状態の解明と光機能性の付与

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ノーベル賞への近道?ー研究室におけるナレッジマネジメントー
  2. ホウ素でがんをやっつける!
  3. DNAを人工的につくる-生体内での転写・翻訳に成功!
  4. ビール好きならこの論文を読もう!
  5. 科研費の審査員を経験して
  6. E. J. Corey からの手紙
  7. 分子運動を世界最高速ムービーで捉える!
  8. 有機合成化学協会誌2017年9月号:キラルケイ素・触媒反応・生体…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ライトケミカル工業2023卒採用情報
  2. 抗菌目薬あす発売 富山化学工業 国内初の小児適用
  3. 2021年ノーベル化学賞ケムステ予想当選者発表!
  4. カルコゲン結合でロジウム二核錯体の構造を制御する!
  5. MacでChem3Dー新たなる希望ー
  6. ガスマン インドール合成 Gassman Indole Synthesis
  7. エド・ボイデン Edward Boyden
  8. 筑波山
  9. Zoomオンライン革命!
  10. カゴ型シルセスキオキサン「ヤヌスキューブ」の合成と構造決定

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年6月
« 5月   7月 »
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

注目情報

最新記事

【書籍】セルプロセッシング工学 (増補) –抗体医薬から再生医療まで–

今回ご紹介する書籍「セルプロセッシング工学 (増補) –抗体医薬から再生医療まで–」は、20…

芳香環にフッ素を導入しながら変形する: 有機フッ素化合物の新規合成法の開発に成功

第361回のスポットライトリサーチは、早稲田大学大学院先進理工学研究科(山口潤一郎研究室)小松田 雅…

湘南ヘルスイノベーションパークがケムステVプレミアレクチャーに協賛しました

レジェンド化学者もしくは第一人者の長時間講演を完全無料で放映する、ケムステVプレ…

化学企業が相次いで学会や顧客から表彰される

武蔵エナジーソリューションズ株式会社に所属する研究者が、2022年度電気化学会技術賞(棚橋賞)を受賞…

第20回次世代を担う有機化学シンポジウム

第20回記念!今年は若手向けの新企画もやります!「若手研究者が口頭発表する機会や自由闊達にディス…

ビナミジニウム塩 Vinamidinium Salt

概要ビナミジニウム塩(Vinamidinium Salt)は、カルボン酸をヴィルスマイヤー・ハッ…

伝わるデザインの基本 増補改訂3版 よい資料を作るためのレイアウトのルール

(さらに…)…

生体医用イメージングを志向した第二近赤外光(NIR-II)色素:②合成蛍光色素

バイオイメージングにおけるの先端領域の一つである「第二近赤外光(NIR-II)色素」についての総説を…

高分子鎖デザインがもたらすポリマーサイエンスの再創造|オンライン・対面併設|進化する高分子材料 表面・界面制御 Advanced コース

開講期間●令和4年 2月  14日(月)、17日(木):基礎編●       21日(月)、…

ホウ素化反応の常識を覆し分岐型アルケンの製造工程を大幅短縮

第 360回のスポットライトリサーチは、広島大学大学院 先進理工系科学研究科 博士課…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP