[スポンサーリンク]

ディスカッション

フライパンの空焚きで有毒ガス発生!?

[スポンサーリンク]

 

フッ素樹脂加工のフライパンは、焦げ付きにくく大変便利なフライパンです。しかし、空焚きをすると有毒なガスが発生するということが広まり始めているようです。実際はどうなのでしょうか。

 

巷を賑わしているきっかけ

5月25日の『あさイチ』(NHK)でフライパン特集が放映されましたが、フッ素樹脂加工されたものは「加熱しすぎると有害な蒸気(ガス)が発生する」と紹介され、ツイッター上では視聴者から「小鳥なら死ぬ」なんて声があがりさらにさらにざわつくことに。(引用:ガジェット通信5月26日)

このように、フライパンの空焚きはとても危険な印象を記事から受けます。空焚きを避けるべきと記載していますが、洗いたてのフライパンは濡れていて油を注ぐことができないので少しは空焚きをする必要があります。また、筆者は独身なので少ない量でフライパンを使わなくてはなりません。

 

フッ素樹脂とは

そもそもフッ素樹脂とはフッ素を含むオレフィンの重合物であり、耐熱性耐薬品性が高く、有機合成実験では多くの器具がフッ素樹脂で作られています。テフロンは、デュポン社のフッ素樹脂類の商標であり、その他にもたくさんのフッ素樹脂の商標があり、①フッ素の含有率(フッ素のみが結合しているか水素も含まれているか)②分子構造の違い(直鎖だけか枝分かれしているか)③形状(オイルかゴムなど)など様々な違いがあります。

mono40468696-150115-02

お馴染みの回転子

神奈川県によるフライパンの加熱実験

先ほどの記事では神奈川県の実験結果を紹介しており、それが非常にインパクトがあるように見えます。神奈川県の内容を要約すると、フッ素樹脂(テフロン)加工したフライパンを単純に温めてガスの発生を目視、GC-MSなどで確認したそうです。その結果、下記のようなガスが発生したと報告しています。

untitled

そして、人体の影響を下記のように記してあります。

No. 発生したガスの名称 ガスの性質 人への影響の恐れ (出典)
1 テトラフルオロエチレン 無色、無臭 呼吸困難 (CAS)
2 ヘキサフルオロプロペン 無色、無臭 めまい、窒息 (CAS)
3 プロペン 無色、微石油臭 眠気、めまい (CAS)
4 クロロメタン 無色、微芳香臭 吐気、頭痛 (CAS)
5 ブテン 無色、無臭 眠気、めまい (MSDS)

これらの結果と調査結果について、下記のような問題があると私は考えます。

  • クロロメタンが発生しているが、塩素を含むガスがフッ素樹脂から発生するとは考えられず、フッ素樹脂以外から発生していると考えられる。
  • 定性的な情報のみで定量的な議論がない。
  • 人への影響を記した表がMSDSの情報を写していて、フライパンから発生した程度のガスを吸引するとめまいなどの影響が確実に出るように見える。

このように、科学的な議論が足りない結果であり、フッ素樹脂加工をこの結果からだけでは悪者にすることはできないと思います。

 

旭硝子によるフッ素樹脂の燃焼実験

フッ素樹脂製造の大手、旭硝子ではエチレン-テトラフルオロエチレン共重合体の燃焼ガスの分析に関する論文を公開しています。実験を要約するとフッ素樹脂のフィルムを750℃で燃焼し、発生したフッ化水素と有機物を定量しています。結果、試料1g 当たり 約570mgのフッ化水素が発生し、5L テドラーバック中に1 ppm以下の有機系ガスが発生したと報告しています。ガス種としては、ペンタフロロプロピレン(例:CF3CF=CHF)、テトラフロロプロピレン(例: CF3CF=CH2、CF3CH=CHF)、トリフロロプロピレ ン(例:CF3CH=CH2)などが同定されたそうです。

フライパンを空焚きするような低温では、フッ化水素よりも有機ガスがより発生すると考え、仮にフッ化水素と同等の量のテトラフルオロエチレンが発生したとすると、5L テドラーバック中に7.4 ppmのガスが発生すると計算できます。テトラフルオロエチレンのTLV-TWA値2 ppmなので、7.4 ppmは若干高いものの、家庭のキッチンは5 Lよりもとても広く、換気扇もあるため、空焚きし続けてもガスの人体への暴露量はより7.4 ppmよりもずっと低いと考えられます。

 

フッ素樹脂のフライパンは危険なのか?

旭硝子の実験を参考にし、長時間の空焚きを避ければ問題ないと私は考えます。もちろん、人体は非常に敏感で人によっては、影響が出るリスクもあります。リスクという観点から見れば、

  • 有機ガス発生の健康被害のリスクを負ってフッ素樹脂のフライパンを使う
  • 空焚きをせず、フライパンの水分による油はねのやけどのリスクを負ってフッ素樹脂のフライパンを使う
  • フッ素樹脂のフライパンを使わず、焦げたものを食べ続け、ガンになるリスクを負う。

もちろん、どのリスクもいくらでも対策はあるので、上記のようなリスクは非常に低いと考えられます。そのため、フッ素樹脂の空焚きのリスクだけを過剰に気にするべきではないと私は考えます。

 

関連書籍

[amazonjs asin=”4526068942″ locale=”JP” title=”トコトンやさしいフッ素の本 (今日からモノ知りシリーズ)”][amazonjs asin=”4621084445″ locale=”JP” title=”プラスチック分析 入門”]

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 3Mとはどんな会社?
  2. 光応答性リキッドマーブルのマイクロリアクターとしての機能開拓
  3. フラーレンの単官能基化
  4. カルボン酸β位のC–Hをベターに臭素化できる配位子さん!
  5. 科学史上最悪のスキャンダル?! “Climatega…
  6. カーボンニュートラル材料とマテリアルズ・インフォマティクス活用で…
  7. 第27回ケムステVシンポ『有機光反応の化学』を開催します!
  8. イミンアニオン型Smiles転位によるオルトヒドロキシフェニルケ…

注目情報

ピックアップ記事

  1. 超音波有機合成 Sonication in Organic Synthesis
  2. ハンスディーカー反応 Hunsdiecker Reaction
  3. PL法 ? ものづくりの担い手として知っておきたい法律
  4. 檜山爲次郎 Tamejiro Hiyama
  5. 化学Webギャラリー@Flickr 【Part2】
  6. キノコから見いだされた新規生物活性物質「ヒトヨポディンA」
  7. フリーデル・クラフツアルキル化 Friedel-Crafts Alkylation
  8. 光照射によって結晶と液体を行き来する蓄熱分子
  9. Corey系譜β版
  10. 化学者のためのエレクトロニクス講座~無電解卑金属めっきの各論編~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年6月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP