[スポンサーリンク]

化学者のつぶやき

炭素をつなげる王道反応:アルドール反応 (5/最終回)

[スポンサーリンク]

「有機化学反応の王道」とも呼ばれるアルドール反応。その特徴、マイルストーン的研究、最近の動向について解説していくシリーズ記事である。

第4回までは、歴史的なマイルストーンとなった成果を紹介してきた。

最終回である第5回は、主として2000年~現在までに達成された、最先端の研究成果について紹介してみたい。これまで適用不可能だった反応剤を用いたり、基質一般性を格段に広げることを触媒の力で実現するというのが大まかな潮流となっている。

新しい触媒的エノラート生成法

エノラート生成は塩基触媒、もしくは前回取りあげたようなエナミン型有機触媒で通常達成される。しかし近年では脱プロトン化を経由しない、新しいタイプのエノラート生成法が検討候補に挙がっている。とりわけ塩基に弱い化合物(エノール化しやすいアルデヒドなど)へと適用性を広げたりなど、既存の枠では使用不可能だった基質へアルドール反応を拡張可能なコンセプトであり、反応の有用性をさらに高める可能性を持っている。

本項では、非脱プロトン化経路でのエノラート生成を「触媒的に」達成している例に絞って紹介してみたい[1]。

● 1,4-還元からのエノラート生成

不飽和カルボニル化合物を1,4-還元すれば、中間体としてエノラートが得られる。これをさらに別のカルボニル化合物へとアルドール付加させれば、炭素-炭素結合を構築できる。これがすなわち、還元的アルドール反応である。エノラートの前調製が不要なため、入手容易な試薬を用いて簡便に行えるなどのメリットがある。

ボストンカレッジのJ.P.Morkenらは、世界に先駆けて実用的な触媒的還元的不斉アルドール反応の開発に成功している[2]。

図1: Morkenらによる触媒的還元的不斉アルドール反応

図1: Morkenらによる触媒的還元的不斉アルドール反応

近年では他のグループによっても改良が進められ、ケトンをアクセプターとしたり、ヒドリドの代わりにアルキル基を1,4-付加させたりと、より多様性に富む手法へ発展がなされている。

● 脱炭酸を経由するエノラート生成

脱炭酸を経る機構で進む触媒的不斉アルドール反応が、ハーバード大学のM.D.Shairらによって報告された[3]。機構解析によれば、酸性度の高い活性メチレンがまず脱プロトン化を受けてアルデヒドへと付加し、その後に脱炭酸が起きるとされている。基質に制限はあるものの、こちらも強塩基を必要としないために穏和に進行し、また保護されていないアルコールなどにも影響を与えないという優れた特徴がある。

図2: Shairらによる脱炭酸型触媒的不斉アルドール反応

図2: Shairらによる脱炭酸型触媒的不斉アルドール反応

●アルキンへのボロン酸付加を経由するエノラート生成

ホウ素エノラートを得るための新しい考え方として、アルキンへのボロン酸付加を経由する方法がUniversity College LondonのT. D. Sheppardらによって提唱されている[4]。金触媒をもちいて穏和に生成でき、引き続くアルドール反応も良好に進行する。付加を分子内形式に縛る必要があるため、現状では一般性に富む方法とは言い難いが、まったく新しい考え方のエノラート生成法として注目に値する報告である。

図3: Sheppardらによるアルキンへの分子内ボロン酸付加→アルドール反応

図3: Sheppardらによるアルキンへの分子内ボロン酸付加→アルドール反応

● オレフィン異性化によるエノラート生成

University College LondonのW. B. Motherwellらは、オレフィンの触媒的異性化を経由してアリルアルコキシドから金属エノラートを生成させ、アルドール反応に伏すという方法論を報告している[5a, 5b]。この考え方の利点は、通常上手く生成させることが難しいアルデヒド由来のエノラートでも選択的に生じさせることができる点にある[5c, 5d]。

図4: Motherwellらによる異性化を介する触媒的エノラート生成→アルドール反応

図4: Motherwellらによる異性化を介する触媒的エノラート生成→アルドール反応

低反応性の基質からエノラートを生成させるには

上述の限られた例を除き、エノラート生成のためにはα位を脱プロトン化しなくてはならない。α位C-H結合の酸性度が高い基質(アルデヒドやケトン)を用いる条件は発展しているものの、α位C-H結合の酸性度が低い基質(エステルやアミドなど)の場合には強塩基が当量以上必要となってしまい、条件を穏和にするにも限度があると考えられてきた。そこで第4回で述べた「直接的アルドール反応」の考え方を、よりα位酸性度の低いドナー基質へと拡張すべく、現在でも様々な角度から検討がされている。

これまでのところ、ニトリル、チオアミド、アミド、カルボン酸などから触媒的にエノラートを生成し、C=X結合への求核付加へと応用する研究例が報告されている。以下の図にはアルドール反応へと適用された例を示す[6, 7]。いずれもカルボニルドナー側基質だけをいかにして活性化するかを考え抜き、用いる基質や元素の特性を十二分に理解して成された絶妙な触媒設計が鍵となっている。

図5 :アルキルニトリル[5]およびチオアミド[6]からの触媒的エノラート生成→不斉アルドール型反応

図5 :アルキルニトリルおよびチオアミドからの触媒的エノラート生成→不斉アルドール型反応

またこれらの化学に関連して、 C=N結合を対象とした触媒的エノラート付加(アミド[8]、エステル[9]、カルボン酸[10])や、 電子不足C=C結合を対象とした触媒的エノラート付加(アミド[11])も報告されている。

これらはいまだ適用制限も多く、求電子剤としてアルデヒド/ケトンが使えない系もある。こういったものは厳密にアルドール反応と呼べないことも多いが、いずれカルボニル化合物全般にも拡張されていく可能性は備わっている。

おわりに

以上、アルドール反応の歴史から先端について眺めてみた。概観であってもこの分量になるため、全てを精緻に記述することは不可能である。実際、分厚い本になるほどの研究例がすでに知られている。より深い内容については、関連書籍などにご自身で当たっていただきたい。

古典的な反応でありながら、これほどの研究が重ねられている反応は稀である。まだまだ発展の止まない化学で有り、有機合成という分野が目指す理想を、各時代ごとに象徴している化学反応だということが分かるだろう。「有機化学の王道」と呼ばれる存在であるのも頷ける。

またこのような重要な化学において、日本人化学者が要所要所でブレイクスルーに寄与しており、貢献度が非常に大きいことは特筆に値する。「有機化学は日本のお家芸」と言われるのも伊達では無い。

どんな化学でも、未来はどうなっているのかと、想像に耽るのは楽しいものである。一研究者としてアルドール反応のさらなる発展を夢見つつ、本稿の筆を置くことにしたい。

関連書籍

[amazonjs asin=”3527307141″ locale=”JP” title=”Modern Aldol Reactions, 2 Volume Set”]

参考文献

  1. Sheppard, T. D. Synlett 2011, 1340. DOI: 10.1055/s-0030-1260570
  2. Taylor, S. J.; Duffey, M. O.; Morken, J. P. J. Am. Chem. Soc. 2000, 122, 4528. DOI: 10.1021/ja9944453
  3. (a) Magdziak, D.; Lalic, G.; Lee, H. M.; Fortner, K. C.; Aloise, A. D.; Shair, M. D. J. Am. Chem. Soc. 2005, 127, 7284. DOI: 10.1021/ja051759j (b) Fortner, K. C.; Shair, M. D. J. Am. Chem. Soc. 2007, 129, 1032. DOI: 10.1021/ja0673682 (c) Review: Wang, Z.-L. Adv. Synth. Catal. 2013, 355, 2745. DOI: 10.1002/adsc.201300375
  4. Körner, C.; Starkov, P.; Sheppard, T. D. J. Am. Chem. Soc. 2010, 132, 5968. DOI: 10.1021/ja102129c
  5. (a) Edwards, G. L.; Motherwell, W. B.; Powell, D. M.; Sandham, D. A. J. Chem. Soc., Chem. Commun. 1991, 1399. DOI: 10.1039/C39910001399 (b) Gazaard, L. G.; Motherwell, W. B.; Sandham, D. A. J. Chem. Soc. Perkin Trans. 1, 1999, 979. DOI: 10.1039/A901370I (c) Lin, L.; Yamamoto, K.; Matsunaga, S.; Kanai, M. Angew. Chem. Int. Ed. 2012, 51, 10275. DOI: 10.1002/anie.201205680 (d) Lin, L.; Yamamoto, K.; Mitsunuma, H.; Kanzaki, Y.; Matsunaga, S.; Kanai, M. J. Am. Chem. Soc. 2015, 137, 15481. DOI: 10.1021/jacs.5b11192
  6. Suto, Y.; Tsuji, R.; Kanai, M.; Shibasaki, M. Org. Lett. 2005, 7, 3757. DOI: 10.1021/ol051423e
  7. (a) Iwata, M.; Yazaki, R.; Suzuki, Y.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 18244. DOI: 10.1021/ja909758e (b) Iwata, M.; Yazaki, R.; Chen, I.-H.; Sureshkumar, D.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2011, 133, 5554. DOI: 10.1021/ja200250p
  8. Kobayashi, S.; Kiyohara, H.; Yamaguchi, M. J. Am. Chem. Soc. 2011, 133, 708. DOI: 10.1021/ja108764d
  9. Yamashita, Y.; Suzuki, H.; Kobayashi, S. Org. Biomol. Chem. 2012, 10, 5750. DOI: 10.1039/c2ob25522g
  10. Morita, Y.; Yamamoto, T.; Nagai, H.; Shimizu, Y.; Kanai, M. J. Am. Chem. Soc. 2015, 137, 7075. DOI: 10.1021/jacs.5b04175
  11. Suzuki, H.; Sato, I.; Yamashita, Y.; Kobayashi, S. J. Am. Chem. Soc. 2015, 137, 4336. DOI: 10.1021/jacs.5b01943
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 比色法の化学(前編)
  2. トリテルペノイドの「トリ」!?octanorcucurbitac…
  3. 立体選択的なスピロ環の合成
  4. アメリカで Ph.D. を取る –結果発表ーッの巻–
  5. 炭素繊維は鉄とアルミに勝るか? 番外編 ~NEDOの成果について…
  6. 第八回ケムステVシンポジウム「有機無機ハイブリッド」を開催します…
  7. 第22回次世代を担う有機化学シンポジウム
  8. ゴキブリをバイオ燃料電池、そしてセンサーに

注目情報

ピックアップ記事

  1. ジェフリー·ロング Jeffrey R. Long
  2. 文具に凝るといふことを化学者もしてみむとてするなり⑯:骨伝導ヘッドホンの巻
  3. 科学:太古の海底に眠る特効薬
  4. マテリアルズ・インフォマティクスの推進成功事例 -なぜあの企業は最短でMI推進を成功させたのか?-
  5. グリーンケミストリー Green Chemistry
  6. 小坂田 耕太郎 Kohtaro Osakada
  7. 「温故知新」で医薬品開発
  8. Nature Reviews Chemistry創刊!
  9. 第167回―「バイオ原料の活用を目指した重合法の開発」John Spevacek博士
  10. 【12月開催】第十四回 マツモトファインケミカル技術セミナー   有機金属化合物 オルガチックスの性状、反応性とその用途

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年10月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP