[スポンサーリンク]

化学者のつぶやき

最近の有機化学論文2

前回に引き続き、注目の有機化学に関する論文を紹介いたします。

【有機反応】δ位選択的なsp3C–H結合の炭素結合形成反応

Site-Selective Alkenylation of δ-C(sp3)‒H Bonds with Alkynes via a Six-Membered Palladacycle

Xu, J.-W.; Zhang, Z.-Z.; Rao, W.-H.; Shi, B.-F. J. Am. Chem. Soc. 2016, 138, 10750–10753. DOI: 10.1021/jacs.6b05978

化合物の位置選択的な官能基化は、今日の有機合成化学において最も重要な反応の一つである。その中でも配向基(directing group)を用いた位置選択的なC‒H 官能基化が注目されている。特に、アミン類の位置選択的C‒H 官能基化は医農薬品や生理活性物質の合成において強力な合成手法になるため近年盛んに研究されている。

本論で浙江大学のBing-Feng Shi教授らは、パラジウム触媒によるピコリルアミド保護されたアミンのデルタ位選択的なC‒H アルケニル化を報告した。従来の遷移金属触媒を用いたC‒H 官能基化では、配向基に対してガンマ位のC‒H が選択的に官能基化されやすい。これは、中間体である五員環メタラサイクルの生成が速度論的に好ましいためである。

それに対して、本触媒系は官能基化されやすいガンマ位のC‒H が共存する中で、デルタ位を選択的にアルケニル化できるという特徴をもつ。この手法を用いて、生理活性天然物中によく見られるキラルなピペリジンの合成にも成功した。

関連論文

  1. Liu, B.; Zhou, T.; Li, B.; Xu, S.; Song, H.; Wang, B. Angew. Chem., Int. Ed. 2014, 53, 4191. DOI: 10.1002/anie.201310711
  2. Li, M.; Yang, Y.; Zhou, D.; Wan, D.; You, J. Org. Lett. 2015, 17, 2546‒2549. DOI: 10.1021/acs.orglett.5b01128
  3. Maity, S.; Agasti, S.; Earsad, A. M.; Hazra, A.; Maiti, D. Chem. Eur. J. 2015, 21, 11320‒11324. DOI: 10.1002/chem.201501962

【有機反応・有機合成】多環性芳香族化合物の新しい合成法

“Combining Traceless Directing Groups with Hybridization Control of Radical Reactivity: From Skipped Enynes to Defect-Free Hexagonal Frameworks”

Pati, K.; Passos Gomes, dos, G.; Alabugin, I. V. Angew. Chem. Int. Ed. 2016, 55, 11633–11637. DOI: 10.1002/anie.201605799

オリゴアルキンを用いた連続ラジカル環化反応は原子効率に優れ、天然物や多環芳香族化合物を効率的に合成できる可能性を秘めている。

2008 年にフロリダ州立大学のAlabugin教授らは、水素化トリブチルスズとラジカル開始剤であるAIBN(アゾイソブチロニトリル)を用いた連続ラジカル環化により初めて3 つの環構造(5 員環2 つ、6 員環1 つ)を一挙に構築することに成功した[1]。2012 年には4 つの環構造(5 員環2 つ、6 員環2 つ)の構築にも成功している[2]。

また2015年に彼らは、反応後に脱離する配向基としてメトキシもしくはヒドロキシ基を導入し、効率的に連続ラジカル環化を行った。結果、芳香環である6 員環を初めて3 つ構築することに成功したが、依然として5 員環形成は避けられなかった[3]。

本論文で、Alabugin らは以前から彼らの反応において問題となっていた終端の5 員環形成を抑制し、6 員環のみの構築に留めることに成功した。彼らはアルキルラジカルの反応性がビニルラジカルに比べて低いことを計算化学により想定した。実際に末端にアルキルラジカルが発生しうる10 以上の基質を用いて反応を行ったところ、5 員環は形成されず、6 員環のみが構築された。また生成物に対してメタンスルホン酸を作用させることで、末端のエステル基部位で新たに6 員環が形成されることがわかった。

彼らが開発した手法は6 員環のみの構築が可能であり、基質範囲が限定的であるもののヘリセン構造を効率よく生み出すことが可能である。この手法を用いて新たな多環芳香族化合物が合成されることを期待したい。

関連論文

  1. Alabugin, I. V.; Gilmore, K.; Patil, S.; Manoharan, M.; Kovalenko, S. V.; Clark, R. J.; Ghiviriga, I. J. Am. Chem. Soc. 2008, 130, 11535. DOI: 10.1021/ja8038213
  2. Byers, P. M.; Alabugin, I. V. J. Am. Chem. Soc. 2012, 134, 9609. DOI: 10.1021/ja3023626
  3. Pati, K.; Gomes, G. P.; Harris, T.; Hughes, A.; Phan, H.; Banerje, T.; Hanson, K.; Alabugin, I. V. J. Am. Chem. Soc. 2015, 137, 1165. DOI:10.1021/ja510563d
The following two tabs change content below.
bona
愛知で化学を教えています。よろしくお願いします。
bona

最新記事 by bona (全て見る)

関連記事

  1. bothの使い方
  2. 芳香族トリフラートからアリールラジカルを生成する
  3. 超難関天然物 Palau’amine・ついに陥落
  4. 乾燥剤の脱水能は?
  5. 【追悼企画】鋭才有機合成化学者ーProf. David Gin
  6. edXで京都大学の無料講義配信が始まる!
  7. 地域の光る化学企業たち-2
  8. タクミナ「スムーズフローポンプQ」の無料モニターキャンペーン

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. Metal-Organic Frameworks: Applications in Separations and Catalysis
  2. START your chemi-storyー日産化学工業会社説明会
  3. ケミカル・ライトの作り方
  4. 2002年ノーベル化学賞『生体高分子の画期的分析手法の開発』
  5. ぼっち学会参加の極意
  6. ヤマハ発動機、サプリメントメーカーなど向けにアスタキサンチンの原料を供給するビジネスを開始
  7. 三井化学と日産化学が肥料事業を統合
  8. 化学と工業
  9. 近赤外光を青色の光に変換するアップコンバージョン-ナノ粒子の開発
  10. システインの位置選択的修飾を実現する「π-クランプ法」

関連商品

注目情報

注目情報

最新記事

投票!2018年ノーベル化学賞は誰の手に!?

今年も9月終盤にさしかかり、毎年恒例のノーベル賞シーズンがやって参りました!化学賞は日本時間…

ライトケミカル工業株式会社ってどんな会社?

ライトケミカル工業は自社製品を持たず、研究開発もしない、更に営業マンもいない独立資本の受託専門会社(…

クラリベイト・アナリティクスが「引用栄誉賞2018」を発表

9月20日、クラリベイト・アナリティクス社から2018年の引用栄誉賞が発表されました。本賞は…

AIで世界最高精度のNMR化学シフト予測を達成

理化学研究所(理研)環境資源科学研究センター環境代謝分析研究チームの菊地淳チームリーダー、伊藤研悟特…

イミニウム励起触媒系による炭素ラジカルの不斉1,4-付加

2017年、カタルーニャ化学研究所・Paolo Melchiorreらは、イミニウム有機触媒系を可視…

ケムステ版・ノーベル化学賞候補者リスト【2018年版】

各媒体からかき集めた情報を元に、「未来にノーベル化学賞の受賞確率がある化学者」をリストアップしていま…

PAGE TOP