[スポンサーリンク]

化学者のつぶやき

Late-Stage C(sp3)-H活性化法でステープルペプチドを作る

[スポンサーリンク]

バルセロナ大学・Fernando Albericioらは、パラジウム触媒によるLate-Stage C(sp3)-H活性化法をペプチド基質に用いることで、ステープルペプチドライブラリーを簡便に構築する手法を開発した。論文中ではアミノ酸適合性、サイズ、ステープル長の影響などが調べられ、簡単な固相合成へも応用されている。Late-Stage C(sp3)-H変換によってペプチド大環状化を達成した世界初の例である。

“Stapled peptides by Late-Stage C(sp3)-H Activation”
Noisier, A. F. M.*; Garcia, J.; Ionut, I. A.; Albericio, F.* Angew. Chem. Int. Ed. 2017, 56, 314. DOI: 10.1002/anie.201608648

問題設定と解決した点

 ステープルペプチドは、医薬開発の観点で注目を集める化合物群である。しかしながら、側鎖ステープル化を実現する手法はごく限られており、利用可能なステープルモチーフの構造的多様性には未だ制限が大きい。Late-Stage C-H変換によってペプチドを標的とした変換が行えれば有用だが、大環状構造を与える先例のほとんどは、フェニルアラニン側鎖やトリプトファン側鎖を標的とするC(sp2)-H結合変換[1]に依拠していた。

 今回著者らは、N末端アラニンの側鎖メチル基と数残基先のヨードフェニルアラニン側鎖を結合させ、ステープルペプチドを合成する方法論の開発に成功した。

技術と手法のキモ

論文[2]より引用

 Yuらによって開発されたパラジウム触媒を用いるペプチドN末端C(sp3)-Hアリール化反応[2]を架橋環化反応へと応用した扱いとなる。

主張の有効性検証

①基質一般性

 汎用されるアミノ酸の保護基(Boc、Trt、Pbfなど)は軒並み反応条件に耐える。N末端のアラニンが反応するが、収率は隣接アミノ酸の種類に大きく依存する。例えバリン、ロイシンは基質の溶解性に難があるため変換されない。プロリン、Trt-システインもno reaction。Trt-ヒスチジンはmessy reaction。

 N末端アミノ酸は、Ala、Aibのみ適用がある。ヨードフェニルアラニン側は基本的にメタ置換体のみ適用がある。

②固相合成

収率は低いものの、固相合成にも使用することができる。Phth基を除去した後、ペプチド鎖をさらに伸長させることができる。N末端での反応だが実質N末以外でのステープル化にも使うことができる。

次に読むべき論文は?

  • C(sp2)-H結合変換によってステープル化を行っている先行論文[1]
  • 環状ペプチド医薬についてまとめた総説[3]

参考文献

  1. (a) Mendive-Tapia, L.; Preciado, S.; Garcia, J.; Ramon, R.; Kielland, n.; Albericio, F.; Lavilla, R. Nat. Commun. 2015, 6, 7160. doi:10.1038/ncomms8160 (b) Ruiz-Rodriguez, J.; Albericio, F.; Rodolfo, L. Chem. Eur. J. 2010, 16, 1124. DOI: 10.1002/chem.200902676
  2. Gong, W.; Zhang, G.; Liu, T.; Giri, R.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 16940. DOI: 10.1021/ja510233h
  3. Santos, G. B.; Ganesan, A.; Emery, F. S. ChemMedChem 2016, 11, 2245. DOI: 10.1002/cmdc.201600288
cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. アメリカ大学院留学:卒業後の進路とインダストリー就活(2)
  2. ベンジル位アセタールを選択的に酸素酸化する不均一系触媒
  3. あなたはどっち? 絶対立体配置
  4. 初めての減圧蒸留
  5. 二つのCO2を使ってアジピン酸を作る
  6. サーモサイエンティフィック「Exactive Plus」: 誰で…
  7. インターネットを活用した英語の勉強法
  8. コロナウイルスCOVID-19による化学研究への影響を最小限にす…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 金属中心に不斉を持つオレフィンメタセシス触媒
  2. 力学的エネルギーで”逆”クリック!
  3. 米デュポン、原料高騰で製品値上げ
  4. 近況報告PartII
  5. スタニルリチウム調製の新手法
  6. 科学予算はイギリスでも「仕分け対象」
  7. 「関東化学」ってどんな会社?
  8. ボリルメタン~メタンの触媒的ホウ素化反応
  9. 理系のためのフリーソフト Ver2.0
  10. そこまでやるか?ー不正論文驚愕の手口

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年4月
« 3月   5月 »
 12
3456789
10111213141516
17181920212223
24252627282930

注目情報

注目情報

最新記事

第165回―「光電変換へ応用可能な金属錯体の開発」Ed Constable教授

第165回の海外化学者インタビューは、エドウィン(エド)・コンステイブル教授です。バーゼル大学化学科…

MEDCHEM NEWSと提携しました

「くすり」に関係する研究者や技術者が約1万7専任が所属する日本薬学会。そ…

抗体を液滴に濃縮し細胞内へ高速輸送:液-液相分離を活用した抗体の新規細胞内輸送法の開発

第341回のスポットライトリサーチは、京都大学 薬学研究科(二木研究室)博士後期課程1年の岩田恭宗さ…

革新的なオンライン会場!「第53回若手ペプチド夏の勉強会」参加体験記

夏休みも去って新学期も始まり、研究者としては科研費申請に忙しい時期ですね。学会シーズン到来の足音も聞…

実験手袋をいろいろ試してみたーつかいすてから高級手袋までー

前回は番外編でしたが、試してみたシリーズ本編に戻ります。引き続き実験関係の消耗品…

第164回―「光・熱エネルギーを変換するスマート材料の開発」Panče Naumov教授

第164回の海外化学者インタビューは、パンチェ・ナウモフ教授です。大阪大学大学院工学研究科 生命先端…

SNS予想で盛り上がれ!2021年ノーベル化学賞は誰の手に?

今年もノーベル賞シーズンの到来です!化学賞は日本時間 10月6日(水) 18時45分に発表です。昨年…

カーボンナノチューブ薄膜のSEM画像を生成し、物性を予測するAIが開発される

先端素材高速開発技術研究組合(ADMAT)、日本ゼオンは産業技術総合研究所(AIST)と共同で、NE…

ケムステ版・ノーベル化学賞候補者リスト【2021年版】

各媒体からかき集めた情報を元に、「未来にノーベル化学賞の受賞確率がある、存命化学者」をリストアップし…

ライトケミカル工業2023卒採用情報

当社の技術グループは、20代~30代の若手社員が重要な主要案件を担当しています。広範囲で高レベルな化…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP