[スポンサーリンク]

化学者のつぶやき

Late-Stage C(sp3)-H活性化法でステープルペプチドを作る

[スポンサーリンク]

バルセロナ大学・Fernando Albericioらは、パラジウム触媒によるLate-Stage C(sp3)-H活性化法をペプチド基質に用いることで、ステープルペプチドライブラリーを簡便に構築する手法を開発した。論文中ではアミノ酸適合性、サイズ、ステープル長の影響などが調べられ、簡単な固相合成へも応用されている。Late-Stage C(sp3)-H変換によってペプチド大環状化を達成した世界初の例である。

“Stapled peptides by Late-Stage C(sp3)-H Activation”
Noisier, A. F. M.*; Garcia, J.; Ionut, I. A.; Albericio, F.* Angew. Chem. Int. Ed. 2017, 56, 314. DOI: 10.1002/anie.201608648

問題設定と解決した点

 ステープルペプチドは、医薬開発の観点で注目を集める化合物群である。しかしながら、側鎖ステープル化を実現する手法はごく限られており、利用可能なステープルモチーフの構造的多様性には未だ制限が大きい。Late-Stage C-H変換によってペプチドを標的とした変換が行えれば有用だが、大環状構造を与える先例のほとんどは、フェニルアラニン側鎖やトリプトファン側鎖を標的とするC(sp2)-H結合変換[1]に依拠していた。

 今回著者らは、N末端アラニンの側鎖メチル基と数残基先のヨードフェニルアラニン側鎖を結合させ、ステープルペプチドを合成する方法論の開発に成功した。

技術と手法のキモ

論文[2]より引用

 Yuらによって開発されたパラジウム触媒を用いるペプチドN末端C(sp3)-Hアリール化反応[2]を架橋環化反応へと応用した扱いとなる。

主張の有効性検証

①基質一般性

 汎用されるアミノ酸の保護基(Boc、Trt、Pbfなど)は軒並み反応条件に耐える。N末端のアラニンが反応するが、収率は隣接アミノ酸の種類に大きく依存する。例えバリン、ロイシンは基質の溶解性に難があるため変換されない。プロリン、Trt-システインもno reaction。Trt-ヒスチジンはmessy reaction。

 N末端アミノ酸は、Ala、Aibのみ適用がある。ヨードフェニルアラニン側は基本的にメタ置換体のみ適用がある。

②固相合成

収率は低いものの、固相合成にも使用することができる。Phth基を除去した後、ペプチド鎖をさらに伸長させることができる。N末端での反応だが実質N末以外でのステープル化にも使うことができる。

次に読むべき論文は?

  • C(sp2)-H結合変換によってステープル化を行っている先行論文[1]
  • 環状ペプチド医薬についてまとめた総説[3]

参考文献

  1. (a) Mendive-Tapia, L.; Preciado, S.; Garcia, J.; Ramon, R.; Kielland, n.; Albericio, F.; Lavilla, R. Nat. Commun. 2015, 6, 7160. doi:10.1038/ncomms8160 (b) Ruiz-Rodriguez, J.; Albericio, F.; Rodolfo, L. Chem. Eur. J. 2010, 16, 1124. DOI: 10.1002/chem.200902676
  2. Gong, W.; Zhang, G.; Liu, T.; Giri, R.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 16940. DOI: 10.1021/ja510233h
  3. Santos, G. B.; Ganesan, A.; Emery, F. S. ChemMedChem 2016, 11, 2245. DOI: 10.1002/cmdc.201600288
cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. Dead Endを回避せよ!「全合成・極限からの一手」⑦
  2. トイレから学ぶ超撥水と超親水
  3. 個性あるTOC
  4. 異なる“かたち”が共存するキメラ型超分子コポリマーを造る
  5. U≡N結合、合成さる
  6. ビュッヒ・フラッシュクロマト用カートリッジもれなくプレゼント!
  7. ケムステも出ます!サイエンスアゴラ2013
  8. Amazonを上手く使って書籍代を節約する方法

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 毒を持ったタコにご注意を
  2. 酸素と水分をW保証!最高クラスの溶媒:脱酸素脱水溶媒
  3. 経営統合のJXTGホールディングスが始動
  4. 金属カルベノイドを用いるシクロプロパン化 Cyclopropanation with Metal Carbenoid
  5. Principles and Applications of Aggregation-Induced Emission
  6. アルミニウム-ポルフィリン錯体を用いる重合の分子量制御
  7. エイモス・B・スミス III Amos B. Smith III
  8. 生物の仕組みに倣う:背景と光に応じて色が変わる顔料の開発
  9. 製薬業界の研究開発費、増加へ
  10. X線分析の基礎知識【X線の性質編】

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

11年ぶり日本開催、国際化学五輪プレイベントを3月に

7月に日本で開催される国際化学オリンピックを盛り上げようと、プレイベント「化学との出会い 未来を拓(…

文具に凝るといふことを化学者もしてみむとてするなり⑫: XP-PEN Deco01の巻

「実験大好き化学者も、デスクワークを快適化しようよ」な文具コーナーです。かなり久々の執筆で恐縮です。…

4つの異なる配位結合を持つ不斉金属原子でキラル錯体を組み上げる!!

第 296 回のスポットライトリサーチは、東京大学塩谷研究室で博士号を取得され、現在は京都大学寺西研…

ナタリー カロリーナ ロゼロ ナバロ Nataly Carolina Rosero-Navarro

Nataly Carolina Rosero-Navarro (コロンビア生まれ) は、日本在住の化…

【マイクロ波化学(株)ウェビナー】 #環境 #SDGs マイクロ波によるサステナブルなものづくり (プラ分解、フロー合成、フィルム、乾燥、焼成)

<内容>ご好評につき、先月と同じ内容のウェブセミナーを開催!事業・開発課題の一ソリュ…

銀ジャケを狂わせた材料 ~タイヤからの意外な犯人~

Tshozoです。先日ケムステスタッフの方が気になる関連論文を紹介されていましたので書くこととしまし…

富士フイルム和光純薬がケムステVプレミアレクチャーに協賛しました

ケムステVシンポとともにケムステオンライン講演会の両輪をなすケムステVプレミアクチャー(Vプレレク)…

ホウ素でがんをやっつける!

「ホウ素」と言ったときに皆さんは何を思い浮かべますか?鈴木宮浦カップリング、ルイス酸(BF3…

Chem-Station Twitter

PAGE TOP