[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~電解パラジウムめっき編~

[スポンサーリンク]

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。今回は、電子部品の省金化などに欠かせない電解パラジウムめっきを取り上げます。

パラジウムの結晶(画像:Wikipedia

有機化学ではクロスカップリングをはじめ触媒金属として名高く、近年では水素吸蔵合金の主成分としても嘱望されているパラジウムですが、工業的には自動車の排気ガス中の窒素酸化物NOxなどを除去する三元触媒としての需要が目立ちます。

パラジウムは有機金属化学の花形です(画像:Wikipedia

自動車の三元触媒にもパラジウムが使われています(画像:Wikipedia

エレクトロニクス分野においては比較的加工が容易でありながら高い耐食性を誇り、金や銅のように原子レベルの熱拡散を起こしにくいことから、配線層の金めっきの下地として内部金属を保護しつつ金の使用量を低減(省金化)するために用いられます。

とはいえパラジウムも貴金属であり、主に周期表の上下に位置するニッケルや白金の副産物として精錬されています。その鉱床はロシアや南アフリカに偏在していることから価格が不安定で、政治的要因によって供給難に陥りやすい欠点もあります。近年ではロシアによるウクライナ侵攻の影響のほか南アフリカでの産出量も減少しており、価格も高止まりを見せています。

パラジウム価格の急騰(画像:Wikipedia

パラジウムめっきにおける最大の難点は、先に述べた水素吸蔵合金の原理と関連しています。カソード上で競合するHERによって生じた水素ガスがパラジウム金属によって吸蔵されることによる脆化(水素脆化)によって引き起こされる不良が問題となります。類似の現象は様々な金属で起こりますが、パラジウムでは常温・常圧下で自身の体積の935倍もの水素ガスを急増し、それに伴って大きな体積変化を起こすために卓越しており、応力の増加、ひいては破断の原因となります。この現象はめっき皮膜が厚くなると顕在化するため、純パラジウムの厚付けめっきは長らく技術的に困難でした。

水素吸蔵合金として注目されるパラジウムは水素脆化の問題を抱えます(画像:Wikipedia

このため、産業的には純パラジウムの出番はさほど多くなく、ニッケルなどとの合金として特性を改善したうえでめっきされることも多々あります。

パラジウムめっき浴

さて、代表的な純パラジウムめっき浴にはアンモニア/塩化アンモニウム緩衝液を用いてアンミン錯体とした塩化アンミン浴と、塩化パラジウムを主成分とする古典的な塩化パラジウム浴が挙げられます。塩化アンミン浴は最も広く用いられていますが、金属表面が曇りやすく、またアンモニア蒸気を絶えず発生するため作業者の安全や環境上の問題に配慮する必要があります。一方、塩化パラジウム浴は残留応力が小さく、緻密なめっき皮膜が得られやすいという長所があります。このほかにも、安定性が劣るもののジニトロジアンミンパラジウム錯体を用いる手法や、硫酸パラジウムを利用し共析した硫黄によって皮膜の物理的特性を改善しようとする試みもありました。

一方、パラジウムはニッケルとよく固溶することから、ニッケルを20 %程度添加した合金とすることによって硬度を増大させ、展延性を向上させるとともに、ピンホールが少なく耐食性に優れためっき皮膜を得ることが可能となります。このパラジウムニッケル合金めっきは配線層の銅を保護する上で優れた性質を示すことから、近年では純パラジウムに代わってエレクトロニクス業界では重要なめっき手法となりつつあります。添加剤の進歩により、貴なパラジウムを卑なニッケルと一定の割合で析出させる技術が確立されており、極めて薄い被膜でも緻密に銅表面を保護することが可能となっています。

このパラジウム-ニッケルめっき浴は塩化アンミン浴スルファミン酸浴が代表的であり、用途に応じて使い分けられています。

最近の動向

パラジウム価格の高騰が続く中、さらに薄くても緻密な皮膜を安定して得ることのできるめっき浴の研究が進められつつあります。また、他の金属の時と同様に、パラジウムめっきもまた無電解めっきへとシフトしつつあります。値上がりの規模や期間によってはパラジウムにとってかわる材料の開発につながる可能性も否定できず、今後の先行きは不透明といえます。

・・・

長くなりましたので今回はこのあたりで区切ります。次回は電解パラジウムめっきを特集しますのでお楽しみに!

関連書籍

[amazonjs asin=”4526053732″ locale=”JP” title=”次世代めっき技術―表面技術におけるプロセス・イノベーション”] [amazonjs asin=”4526045225″ locale=”JP” title=”表面処理工学―基礎と応用”] [amazonjs asin=”B000J740MS” locale=”JP” title=”めっき技術ガイドブック (1983年)”]
gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 光触媒でエステルを多電子還元する
  2. 【12月開催】第4回 マツモトファインケミカル技術セミナー有機金…
  3. アミジルラジカルで遠隔位C(sp3)-H結合を切断する
  4. Reaxys PhD Prize 2020募集中!
  5. 複雑な生化学反応の条件検討に最適! マイクロ流体技術を使った新手…
  6. メソポーラスシリカ(2)
  7. 100年前のノーベル化学賞ーフリッツ・ハーバーー
  8. 【第14回Vシンポ特別企画】講師紹介:酒田 陽子 先生

注目情報

ピックアップ記事

  1. ケムステVシンポ「最先端有機化学」開催報告(前編)
  2. 光触媒-ニッケル協働系によるシステイン含有ペプチドのS-アリール化
  3. 牛糞からプラスチック原料 水素とベンゼン、北大が成功
  4. 簡単に扱えるボロン酸誘導体の開発 ~小さな構造変化が大きな違いを生んだ~
  5. チャップマン転位 Chapman Rearrangement
  6. 新元素、2度目の合成成功―理研が命名権獲得
  7. アルゼンチン キプロス
  8. 有機反応を俯瞰する ーリンの化学 その 2 (光延型置換反応)
  9. 天然の日焼け止め?
  10. 次世代の二次元物質 遷移金属ダイカルコゲナイド

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年12月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP