[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~電解パラジウムめっき編~

[スポンサーリンク]

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。今回は、電子部品の省金化などに欠かせない電解パラジウムめっきを取り上げます。

パラジウムの結晶(画像:Wikipedia

有機化学ではクロスカップリングをはじめ触媒金属として名高く、近年では水素吸蔵合金の主成分としても嘱望されているパラジウムですが、工業的には自動車の排気ガス中の窒素酸化物NOxなどを除去する三元触媒としての需要が目立ちます。

パラジウムは有機金属化学の花形です(画像:Wikipedia

自動車の三元触媒にもパラジウムが使われています(画像:Wikipedia

エレクトロニクス分野においては比較的加工が容易でありながら高い耐食性を誇り、金や銅のように原子レベルの熱拡散を起こしにくいことから、配線層の金めっきの下地として内部金属を保護しつつ金の使用量を低減(省金化)するために用いられます。

とはいえパラジウムも貴金属であり、主に周期表の上下に位置するニッケルや白金の副産物として精錬されています。その鉱床はロシアや南アフリカに偏在していることから価格が不安定で、政治的要因によって供給難に陥りやすい欠点もあります。近年ではロシアによるウクライナ侵攻の影響のほか南アフリカでの産出量も減少しており、価格も高止まりを見せています。

パラジウム価格の急騰(画像:Wikipedia

パラジウムめっきにおける最大の難点は、先に述べた水素吸蔵合金の原理と関連しています。カソード上で競合するHERによって生じた水素ガスがパラジウム金属によって吸蔵されることによる脆化(水素脆化)によって引き起こされる不良が問題となります。類似の現象は様々な金属で起こりますが、パラジウムでは常温・常圧下で自身の体積の935倍もの水素ガスを急増し、それに伴って大きな体積変化を起こすために卓越しており、応力の増加、ひいては破断の原因となります。この現象はめっき皮膜が厚くなると顕在化するため、純パラジウムの厚付けめっきは長らく技術的に困難でした。

水素吸蔵合金として注目されるパラジウムは水素脆化の問題を抱えます(画像:Wikipedia

このため、産業的には純パラジウムの出番はさほど多くなく、ニッケルなどとの合金として特性を改善したうえでめっきされることも多々あります。

パラジウムめっき浴

さて、代表的な純パラジウムめっき浴にはアンモニア/塩化アンモニウム緩衝液を用いてアンミン錯体とした塩化アンミン浴と、塩化パラジウムを主成分とする古典的な塩化パラジウム浴が挙げられます。塩化アンミン浴は最も広く用いられていますが、金属表面が曇りやすく、またアンモニア蒸気を絶えず発生するため作業者の安全や環境上の問題に配慮する必要があります。一方、塩化パラジウム浴は残留応力が小さく、緻密なめっき皮膜が得られやすいという長所があります。このほかにも、安定性が劣るもののジニトロジアンミンパラジウム錯体を用いる手法や、硫酸パラジウムを利用し共析した硫黄によって皮膜の物理的特性を改善しようとする試みもありました。

一方、パラジウムはニッケルとよく固溶することから、ニッケルを20 %程度添加した合金とすることによって硬度を増大させ、展延性を向上させるとともに、ピンホールが少なく耐食性に優れためっき皮膜を得ることが可能となります。このパラジウムニッケル合金めっきは配線層の銅を保護する上で優れた性質を示すことから、近年では純パラジウムに代わってエレクトロニクス業界では重要なめっき手法となりつつあります。添加剤の進歩により、貴なパラジウムを卑なニッケルと一定の割合で析出させる技術が確立されており、極めて薄い被膜でも緻密に銅表面を保護することが可能となっています。

このパラジウム-ニッケルめっき浴は塩化アンミン浴スルファミン酸浴が代表的であり、用途に応じて使い分けられています。

最近の動向

パラジウム価格の高騰が続く中、さらに薄くても緻密な皮膜を安定して得ることのできるめっき浴の研究が進められつつあります。また、他の金属の時と同様に、パラジウムめっきもまた無電解めっきへとシフトしつつあります。値上がりの規模や期間によってはパラジウムにとってかわる材料の開発につながる可能性も否定できず、今後の先行きは不透明といえます。

・・・

長くなりましたので今回はこのあたりで区切ります。次回は電解パラジウムめっきを特集しますのでお楽しみに!

関連書籍

[amazonjs asin=”4526053732″ locale=”JP” title=”次世代めっき技術―表面技術におけるプロセス・イノベーション”] [amazonjs asin=”4526045225″ locale=”JP” title=”表面処理工学―基礎と応用”] [amazonjs asin=”B000J740MS” locale=”JP” title=”めっき技術ガイドブック (1983年)”]
gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 重いキノン
  2. 立体規則性および配列を制御した新しい高分子合成法
  3. 出発原料から学ぶ「Design and Strategy in …
  4. リングサイズで性質が変わる蛍光性芳香族ナノベルトの合成に成功
  5. スペクトルから化合物を検索「KnowItAll」
  6. 次世代型合金触媒の電解水素化メカニズムを解明!アルキンからアルケ…
  7. 有機反応を俯瞰する ー芳香族求電子置換反応 その 2
  8. 円偏光発光を切り替える色素ー暗号通信への応用に期待ー

注目情報

ピックアップ記事

  1. 【速報】Mac OS X Lionにアップグレードしてみた
  2. 難攻不落の不斉ラジカルカチオン反応への挑戦
  3. デーヴィス酸化 Davis Oxidation
  4. ウルリッヒ・ウィーズナー Ulrich Wiesner
  5. 住友化学、液晶関連事業に100億円投資・台湾に新工場
  6. 分子積み木による新規ゼオライト合成に成功、産総研
  7. 極小の「分子ペンチ」開発
  8. Chem-Station開設5周年へ
  9. キレトロピー反応 Cheletropic Reaction
  10. キニーネ きにーね quinine

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年12月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

【日産化学 27卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で12領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

hERG阻害 –致死性副作用をもたらす創薬の大敵–

創薬の臨床試験段階において、予期せぬ有害事象 (または副作用) の発生は、数十億円以…

久保田 浩司 Koji Kubota

久保田 浩司(Koji Kubota, 1989年4月2日-)は、日本の有機合成化学者である。北海道…

ACS Publications主催 創薬企業フォーラム開催のお知らせ Frontiers of Drug Discovery in Japan: ACS Industrial Forum 2025

日時2025年12月5日(金)13:00~17:45会場大阪大学産業科学研究所 管理棟 …

【太陽ホールディングス】新卒採用情報(2027卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

欧米化学メーカーのR&D戦略について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、欧米化…

有馬温泉でラドン泉の放射線量を計算してみた【化学者が行く温泉巡りの旅】

有馬温泉は、日本の温泉で最も高い塩分濃度を持ち黄褐色を呈する金泉と二酸化炭素と放射性のラドンを含んだ…

アミンホウ素を「くっつける」・「つかう」 ~ポリフルオロアレーンの光触媒的C–Fホウ素化反応と鈴木・宮浦カップリングの開発~

第684回のスポットライトリサーチは、名古屋工業大学大学院工学研究科(中村研究室)安川直樹 助教と修…

第56回ケムステVシンポ「デバイスとともに進化する未来の化学」を開催します!

第56回ケムステVシンポの会告を致します。3年前(32回)・2年前(41回)・昨年(49回)…

骨粗鬆症を通じてみる薬の工夫

お久しぶりです。以前記事を挙げてから1年以上たってしまい、時間の進む速さに驚いていま…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP