[スポンサーリンク]

化学者のつぶやき

電子不足トリプトファン誘導体を合成する人工酵素

カリフォルニア工科大学・Frances H. Arnoldらのグループは、トリプトファン合成酵素に様々な変異を加えることで酵素活性および特性を大幅に改善し、様々な電子不足トリプトファン誘導体を合成することに成功した。

“Unlocking Reactivity of TrpB: A General Biocatalytic Platform for Synthesis of Tryptophan Analogues”
Romney, D. K.; Murciano-Calles, J.; Wehrmüller, J. E.; Arnold, F. H.* J. Am. Chem. Soc. 2017, 139, 10769–10776. DOI: 10.1021/jacs.7b05007(アイキャッチ画像は本論文より引用)

問題設定と解決した点

トリプトファン誘導体はthaxtomicin Aやindolactam Vといった天然物の前駆体である重要な物質である。トリプトファンを誘導化する酵素としてはニトロ化、ハロゲン化、アルキル化など様々な機能を持つものが見つかっているが、その機能はそれぞれ別の酵素が担っている。様々な誘導体を合成できる単一の酵素が反応簡略化のためには求められる。

技術や手法のキモ

インドールとセリンからトリプトファンを合成するトリプトファン合成酵素(tryptophan synthase, TrpS)の活用により、その問題解決が期待できる。しかしながらその酵素活性はインドール側の立体的・電子的要因に大きく影響され、とくに電子不足なトリプトファンは合成することができない。
TrpSの反応機構は下記の通りである。ピリドキサールリン酸(PLP)で活性化されたL-セリン(II)がデヒドロアラニンを生成し、それにインドール3位が求核攻撃する(IV)という機構で進行する。ゆえに電子求引性置換基を備えるインドールの場合には反応が遅くなるか、全く進行しない。

冒頭論文より引用

筆者らは酵素の指向性進化法によってTrpSの反応性および基質一般性を改善し、電子求引性置換基を備えるトリプトファンの酵素的合成を可能にした。

主張の有効性検証

まずは上記天然物2種の共通前駆体となる4-ニトロトリプトファンの合成を目標に設定した。この合成には、グルタミン酸から6ステップを要する化学合成経路[1]か、NOとO2を使ってトリプトファンをニトロ化する特殊酵素を用いた経路[2]が知られるのみである。また反応性に乏しいニトロインドールからトリプトファンを合成できれば、他の電子求引性インドールにも適用できる酵素になると考えられた。

①指向性進化による酵素活性の改善

野生型酵素のPfTrpBでは、4-ニトロインドールとセリンの反応は全く進行せず、変異型酵素も副生成物(isoTrp)を与えるものがほとんどだった。その中で、筆者らが報告したインドールとスレオニンを反応させる変異型酵素Pf2B9[3]が目的物を18%収率で与えることが分かったため、これを起点として最適化を行った。抗体ポケット部の残基を変換しても改善効果が見られなかったが、ランダムな変異を段階的に計6個導入した変異体Pf2A6が最も高い収率(91%)を示した。

Pf2A6、及び進化途中の段階で生まれたPf5G8、違う系列の変異を導入して得られた酵素PfA09Tm2F3を用いると、4-, 5-, 6-, 7-ニトロインドールにそれぞれ適合した反応性を示すことも明らかとなった。

②変異導入の影響についての考察
  • 本反応の収率向上において問題となるのが、セリン→ピルビン酸への分解経路である(上記サイクル参照)。酵素はopenとcloseの2つの立体構造をとり、closeの構造安定化がセリン分解経路の抑制に寄与すると考えられている[4]。N166はH275と相互作用しているが、上記進化系列ではN→Dへ変異させることで、その相互作用が強まっている。これが副反応の抑制に関わっているものと考えられる。
  • Pf5G8Pf2A6は酵素の活性部位における変異導入である。I183F及びV186Aは酵素ポケットをより4-ニトロインドールに適応した形にしている。その代わりに5-もしくは6-ニトロインドールへの適合性は下がる。
  • また同じく活性部位に存在するE104は、セリンのヒドロキシ基のプロトン化やインドールの脱プロトン化を担う重要な残基である。TrpSのE104A変異によってインドールとセリン間の反応活性が失われる報告[5]もあるが、Pf5G8は同じ変異を有するもののTrpの反応性がほぼ変わらない。他の変異によってE104の役割が変わっていると考えられる。
③基質一般性

上記進化系列で得られる酵素を用いると、4位~7位に様々な電子求引性置換基を備えるトリプトファンを中程度~良好な収率で得ることができる。2置換体も合成できる。

冒頭論文より引用

簡便な操作で実施でき、酵素を精製する必要が無いことが特徴である。多量発現可能・熱的安定な酵素を基にしているため、大腸菌発現液を熱処理して沈殿を遠心して得られる上澄みがそのまま活性酵素溶液となる。これを反応系中に入れて加熱するだけで、トリプトファン誘導体のグラムスケール合成が可能である。

未解決課題へのアプローチ

  • 反応がデヒドロアラニンへの求核攻撃であるため、変異の種類によっては他の求核剤の導入によるトリプトファン系以外の非天然アミノ酸合成も期待できるかもしれない。実際に筆者らはセリンの代わりにスレオニンを反応させる酵素[3]を開発してもいる。

参考文献

  1. Zhang, H.; Ning, X.; Hang, H.; Ru, X.; Li, H.; Li, Y.; Wang, L.; Zhang, X.; Yu, S.; Qiao, Y.; Wang, X.; Wang, P. G. Org. Lett. 2013, 15, 5670. DOI: 10.1021/ol4026556
  2. Barry, S. M.; Kers, J. A.; Johnson, E. G.; Song, L.; Aston, P. R.; Patel, B.; Krasnoff, S. B.; Crane, B. R.; Gibson, D. M.; Loria, R.; Challis, G. L. Nat. Chem. Biol. 2012, 8, 814. doi:10.1038/nchembio.1048
  3. Herger, M.; van Roye, P.; Romney, D. K.; Brinkmann-Chen, S.; Buller, A. R.; Arnold, F. H. J. Am. Chem. Soc. 2016, 138, 8388. DOI: 10.1021/jacs.6b04836
  4. Fan, Y.-X.; McPhie, P.; Miles, E. W. Biochemistry 2000, 39, 4692. DOI: 10.1021/bi9921586
  5. Ruvinov, S. B.; Ahmed, S. A.; McPhie, P.; Miles, E. W. J. Biol. Chem. 1995, 270, 17333. doi:10.1074/jbc.270.29.17333
The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 第95回日本化学会付設展示会ケムステキャンペーン!Part II…
  2. 韓国チームがiPS細胞の作製効率高める化合物を発見
  3. 史上最も不運な化学者?
  4. 当量と容器サイズでヒドロアミノアルキル化反応を制御する
  5. ICMSE International Conference o…
  6. アルミに関する一騒動 ~約20年前の出来事~
  7. 製薬業界における複雑な医薬品候補の合成の設計について: Natu…
  8. 有機アジド(3):アジド導入反応剤

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ヨン・ピエール Jorn Piel
  2. 人前ではとても呼べない名前の化合物
  3. 一般人と化学者で意味が通じなくなる言葉
  4. 孫悟飯のお仕事は?
  5. 化学かるた:元素編ー世界化学年をちなみ
  6. 糖鎖クラスター修飾で分子の生体内挙動を制御する
  7. 対決!フタロシアニンvsポルフィリン
  8. 電子不足トリプトファン誘導体を合成する人工酵素
  9. 2017卒大学生就職企業人気ランキングが発表
  10. 三菱化学グループも石化製品を値上げ、原油高で価格転嫁

関連商品

注目情報

注目情報

最新記事

カーボンナノベルト合成初成功の舞台裏 (1)

今年もあともう少しですね。私は中国の大学院で研究を行っている日本人です。このChem-Sta…

有機合成化学の豆知識botを作ってみた

皆さんこんにちは。めっきり実験から退き、教育係+マネジメント係になってしまったcosineです。…

デニス・ドーハティ Dennis A. Dougherty

デニス・A・ドーハティ(Dennis A. Dougherty、1952年12月4日-)は、米国の物…

ベンゼンの直接アルキル化

ベンゼンにアルキル基を導入したいとき、皆さんはどのような手法を用いますか? (さらに&hel…

アメリカ大学院留学:TAの仕事

私がこれまでの留学生活で経験した一番の挫折は、ティーチングアシスタント(TA)です。慣れない英語で大…

2017年の注目分子はどれ?

今年も残りあとわずかとなり、毎年おなじみのアメリカ化学会(ACS)によるMolecules of t…

Chem-Station Twitter

PAGE TOP