[スポンサーリンク]

化学者のつぶやき

電子不足トリプトファン誘導体を合成する人工酵素

[スポンサーリンク]

カリフォルニア工科大学・Frances H. Arnoldらのグループは、トリプトファン合成酵素に様々な変異を加えることで酵素活性および特性を大幅に改善し、様々な電子不足トリプトファン誘導体を合成することに成功した。

“Unlocking Reactivity of TrpB: A General Biocatalytic Platform for Synthesis of Tryptophan Analogues”
Romney, D. K.; Murciano-Calles, J.; Wehrmüller, J. E.; Arnold, F. H.* J. Am. Chem. Soc. 2017, 139, 10769–10776. DOI: 10.1021/jacs.7b05007(アイキャッチ画像は本論文より引用)

問題設定と解決した点

トリプトファン誘導体はthaxtomicin Aやindolactam Vといった天然物の前駆体である重要な物質である。トリプトファンを誘導化する酵素としてはニトロ化、ハロゲン化、アルキル化など様々な機能を持つものが見つかっているが、その機能はそれぞれ別の酵素が担っている。様々な誘導体を合成できる単一の酵素が反応簡略化のためには求められる。

技術や手法のキモ

インドールとセリンからトリプトファンを合成するトリプトファン合成酵素(tryptophan synthase, TrpS)の活用により、その問題解決が期待できる。しかしながらその酵素活性はインドール側の立体的・電子的要因に大きく影響され、とくに電子不足なトリプトファンは合成することができない。
TrpSの反応機構は下記の通りである。ピリドキサールリン酸(PLP)で活性化されたL-セリン(II)がデヒドロアラニンを生成し、それにインドール3位が求核攻撃する(IV)という機構で進行する。ゆえに電子求引性置換基を備えるインドールの場合には反応が遅くなるか、全く進行しない。

冒頭論文より引用

筆者らは酵素の指向性進化法によってTrpSの反応性および基質一般性を改善し、電子求引性置換基を備えるトリプトファンの酵素的合成を可能にした。

主張の有効性検証

まずは上記天然物2種の共通前駆体となる4-ニトロトリプトファンの合成を目標に設定した。この合成には、グルタミン酸から6ステップを要する化学合成経路[1]か、NOとO2を使ってトリプトファンをニトロ化する特殊酵素を用いた経路[2]が知られるのみである。また反応性に乏しいニトロインドールからトリプトファンを合成できれば、他の電子求引性インドールにも適用できる酵素になると考えられた。

①指向性進化による酵素活性の改善

野生型酵素のPfTrpBでは、4-ニトロインドールとセリンの反応は全く進行せず、変異型酵素も副生成物(isoTrp)を与えるものがほとんどだった。その中で、筆者らが報告したインドールとスレオニンを反応させる変異型酵素Pf2B9[3]が目的物を18%収率で与えることが分かったため、これを起点として最適化を行った。抗体ポケット部の残基を変換しても改善効果が見られなかったが、ランダムな変異を段階的に計6個導入した変異体Pf2A6が最も高い収率(91%)を示した。

Pf2A6、及び進化途中の段階で生まれたPf5G8、違う系列の変異を導入して得られた酵素PfA09Tm2F3を用いると、4-, 5-, 6-, 7-ニトロインドールにそれぞれ適合した反応性を示すことも明らかとなった。

②変異導入の影響についての考察
  • 本反応の収率向上において問題となるのが、セリン→ピルビン酸への分解経路である(上記サイクル参照)。酵素はopenとcloseの2つの立体構造をとり、closeの構造安定化がセリン分解経路の抑制に寄与すると考えられている[4]。N166はH275と相互作用しているが、上記進化系列ではN→Dへ変異させることで、その相互作用が強まっている。これが副反応の抑制に関わっているものと考えられる。
  • Pf5G8Pf2A6は酵素の活性部位における変異導入である。I183F及びV186Aは酵素ポケットをより4-ニトロインドールに適応した形にしている。その代わりに5-もしくは6-ニトロインドールへの適合性は下がる。
  • また同じく活性部位に存在するE104は、セリンのヒドロキシ基のプロトン化やインドールの脱プロトン化を担う重要な残基である。TrpSのE104A変異によってインドールとセリン間の反応活性が失われる報告[5]もあるが、Pf5G8は同じ変異を有するもののTrpの反応性がほぼ変わらない。他の変異によってE104の役割が変わっていると考えられる。
③基質一般性

上記進化系列で得られる酵素を用いると、4位~7位に様々な電子求引性置換基を備えるトリプトファンを中程度~良好な収率で得ることができる。2置換体も合成できる。

冒頭論文より引用

簡便な操作で実施でき、酵素を精製する必要が無いことが特徴である。多量発現可能・熱的安定な酵素を基にしているため、大腸菌発現液を熱処理して沈殿を遠心して得られる上澄みがそのまま活性酵素溶液となる。これを反応系中に入れて加熱するだけで、トリプトファン誘導体のグラムスケール合成が可能である。

未解決課題へのアプローチ

  • 反応がデヒドロアラニンへの求核攻撃であるため、変異の種類によっては他の求核剤の導入によるトリプトファン系以外の非天然アミノ酸合成も期待できるかもしれない。実際に筆者らはセリンの代わりにスレオニンを反応させる酵素[3]を開発してもいる。

参考文献

  1. Zhang, H.; Ning, X.; Hang, H.; Ru, X.; Li, H.; Li, Y.; Wang, L.; Zhang, X.; Yu, S.; Qiao, Y.; Wang, X.; Wang, P. G. Org. Lett. 2013, 15, 5670. DOI: 10.1021/ol4026556
  2. Barry, S. M.; Kers, J. A.; Johnson, E. G.; Song, L.; Aston, P. R.; Patel, B.; Krasnoff, S. B.; Crane, B. R.; Gibson, D. M.; Loria, R.; Challis, G. L. Nat. Chem. Biol. 2012, 8, 814. doi:10.1038/nchembio.1048
  3. Herger, M.; van Roye, P.; Romney, D. K.; Brinkmann-Chen, S.; Buller, A. R.; Arnold, F. H. J. Am. Chem. Soc. 2016, 138, 8388. DOI: 10.1021/jacs.6b04836
  4. Fan, Y.-X.; McPhie, P.; Miles, E. W. Biochemistry 2000, 39, 4692. DOI: 10.1021/bi9921586
  5. Ruvinov, S. B.; Ahmed, S. A.; McPhie, P.; Miles, E. W. J. Biol. Chem. 1995, 270, 17333. doi:10.1074/jbc.270.29.17333
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 有機合成化学協会誌2023年4月号:ビニルボロン酸・動的キラル高…
  2. ラウリマライドの全合成
  3. ゼロから学ぶ機械学習【化学徒の機械学習】
  4. 産業紙閲覧のすゝめ
  5. アメリカ大学院留学:研究室選びの流れ
  6. 「ハーバー・ボッシュ法を超えるアンモニア合成法への挑戦」を聴講し…
  7. 荷電π電子系が発現するジラジカル性をイオンペア形成によって制御
  8. 論文コレクター必見!WindowsでPDFを全文検索する方法

注目情報

ピックアップ記事

  1. 有機合成化学協会誌7月号:ランドリン全合成・分子間interrupted Pummerer反応・高共役拡張ポルフィリノイド・イナミド・含フッ素ビニルスルホニウム塩・ベンゾクロメン
  2. マクドナルドなど9社を提訴、発がん性物質の警告表示求め=カリフォルニア州
  3. 林 雄二郎博士に聞く ポットエコノミーの化学
  4. 人生、宇宙、命名の答え
  5. ポール・モドリッチ Paul L. Modrich
  6. 研究室での英語【Part1】
  7. 第2回エクソソーム学術セミナー 主催:同仁化学研究所
  8. 化学研究ライフハック:ソーシャルブックマークを活用しよう!
  9. 福山インドール合成 Fukuyama Indole Synthesis
  10. 「世界最小の元素周期表」が登場!?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年12月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP