[スポンサーリンク]

化学者のつぶやき

リンだ!リンだ!ホスフィン触媒を用いたメチルアミノ化だ!

[スポンサーリンク]

有機リン触媒とアリールボロン酸を用いたニトロメタンの還元的C–Nカップリング反応が報告された本手法により様々な芳香族化合物のメチルアミノ化が容易となった。

ニトロメタンのN-官能基化反応

安価に入手可能なニトロメタンは有機合成化学において、強力な電子求引基を有することから炭素求核剤として頻用されてきた。還元的条件下、ニトロメタンをメチルアミノ化剤として利用できれば、爆発性がある気体メチルアミンの代替となり有用性が高い。しかし、その手法にはニトロメタンのNef反応の併発や、ニトロ基の還元により生じるニトロソ中間体がオキシムへ互変異性するといった課題があり、報告例は少ない。
そのような中で、2018年にNiggemannらは、ニトロメタンとB2pin2を用いたベンジル亜鉛ブロミドメチルアミノ化を初めて報告した(図1A)[1]。本反応ではニトロソ中間体よりも安定なナイトレノイド中間体を経由することで、ニトロソ中間体の互変異性が抑制された。翌年、Suárez-PantigaとSanszらはジオキソモリブデン触媒とPPh3存在下、ニトロメタンを用いたフェニルボロン酸のメチルアミノ化を報告した(図1B)[2]。本触媒系では互変異性よりもはやくニトロソ中間体を還元できる。
一方、2018年本論文の著者であるマサチューセッツ工科大学のRadosevichらは、独自のホスフェタン触媒1を用いたニトロアレーンとアリールボロン酸のC–Nカップリング反応を報告した(図1C)。この反応は、ホスフェタン1とニトロアレーンの[3+1]キレトロピー反応を経由して進行する(図1D)[4]。構造的歪みからホスフェタン1は電子受容性および電子供与性に優れ、本キレトロピー反応が容易に進行する。本著者らは、ニトロアレーンよりも大きなフロンティア分子軌道(FMO)間のエネルギー差(⊿⊿E = 1.0 eV)をもつニトロメタンに対しても本触媒が有効であると考えた。今回彼らは、実際に同触媒1をニトロメタンとアリールボロン酸との反応に適用し、C–Nカップリングが進行することを見いだした(図1E)。

図1. (A) Niggemannらの反応 (B) Suárez-Pantigaらの反応 (C) ホスフェタン触媒1によるニトロアレーンのC–Nカップリング反応 (D) ホスフェタン触媒1の反応性 (E) 今回の反応

 

P(III)/P(V)-Catalyzed Methylamination of Arylboronic Acids and Esters: Reductive C−N Coupling with Nitromethane as a Methylamine Surrogate

Li, G.; Qin, Z.; Radosevich, A. T. J. Am. Chem. Soc. 2020, 142, 16205–16210.

DOI: 10.1021/jacs.0c08035

論文著者の紹介

研究者:Alexander T. Radosevich
研究者の経歴:
2002 B.S., University of Notre Dame, USA (Prof. Olaf G. Wiest)
2002–2007 Ph.D, The University of California, Berkeley, USA (Prof. F. Dean Toste)
2007–2010 Postdoc, Massachusetts Institute of Technology, USA (Prof. Daniel G. Nocera)
2011–2016 Assistant Professor, The Pennsylvania State University, USA
2016– Associate Professor, Massachusetts Institute of Technology, USA
研究内容:リンを中心としたp-ブロック元素の触媒開発とそれらを利用した有機合成方法論の確立

論文の概要

 本反応は、CPME溶媒中ホスフェタン触媒1と還元剤としてフェニルシラン存在下、ニトロメタン(2)と種々のアリールボロン酸3を反応させることで、メチルアミノ化体4を与える。本反応の官能基許容性は高く、ハロゲン(4a)やエステル(4b)、アミノ基をもつアリールボロン酸(4c)も適用可能である(図2A)。ヘテロアレーンをメチルアミノ化する場合には、ボロン酸3の代わりにアリールボロン酸エステル3’を用いるとメチルアミノ化体4’が良好な収率で得られる(4a’, 4b’)。この理由はボロン酸3を用いる際に競合するプロトン化脱ホウ素化が抑制されたためである。また、ボロン酸エステル3’は通常のアリール基のメチルアミノ化にも利用できる(4c’, 4d’)。
次に著者らは、FMO間のエネルギー差に起因するニトロメタンとニトロアレーンの反応性の違いに着目し、ニトロメタンとニトロアレーン5、ボロン酸6とボロン酸エステル7のワンポットでのカップリング反応を試みた。その結果、2とは反応性の低い7が、5とは反応性の高い6がそれぞれ反応し、メチルアニリン8とジアリールアミン9が良好な収率で得られ、他の1011は低収率であった(図2B)。この反応性の差異は、2とニトロアリールボロン酸エステル誘導体12、およびボロン酸13の三成分連結反応にも利用でき、ジアミノベンゼン14が高収率で得られた(図2C)。

図2. (A) 最適条件および基質適用範囲 (B) 本触媒を用いたワンポット反応 (C) 三成分連結反応

以上、ホスフェタン触媒を用いたニトロメタンのC–Nカップリング反応が開発された。今後は、本触媒とニトロアルカンを用いた複雑な含窒素化合物合成への応用が期待される。

参考文献

  1. Rauser, M.; Ascheberg, C.; Niggemann, M. Direct Reductive N-Functionalization of Aliphatic Nitro Compounds. Chem. Eur. J. 2018, 24, 3970–3974. DOI: 10.1002/chem.201705986
  2. Suárez-Pantiga, S.; Hernández-Ruiz, R.; Virumbrales, C.; Pedrosa, M. R.; Sanz, R. Reductive Molybdenum-Catalyzed Direct Amination of Boronic Acids with Nitro Compounds. Angew. Chem., Int. Ed. 2019, 58, 2129–2133. DOI: 10.1002/anie.201812806
  3. Nykaza, T. V.; Cooper, J. C.; Li, G.; Mahieu, N.; Ramirez, A.; Luzung, M. R.; Radosevich, A. T. Intermolecular Reductive C−N Cross Coupling of Nitroarenes and Boronic Acids by PIII/PV=O Catalysis. J. Am. Chem. Soc. 2018, 140, 15200−15205. DOI: 10.1021/jacs.8b10769
  4. Nykaza, T. V.; Harrison, T. S.; Ghosh, A.; Putnik, R. A.; Radosevich, A. T. A Biphilic Phosphetane Catalyzes N–N Bond-Forming Cadogan Heterocyclization via PIII/ PV=O Redox Cycling. J. Am. Chem. Soc. 2017, 139, 6839–6842. DOI: 10.1021/jacs.7b03260
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 大量合成も可能なシビれる1,2-ジアミン合成法
  2. 酸で活性化された超原子価ヨウ素
  3. 芳香環にフッ素を導入しながら変形する: 有機フッ素化合物の新規合…
  4. 近赤外光を青色の光に変換するアップコンバージョン-ナノ粒子の開発…
  5. 研究室でDIY!割れないマニホールドをつくろう・改
  6. 2009年ノーベル化学賞『リボソームの構造と機能の解明』
  7. ホイスラー合金を用いる新規触媒の発見と特性調節
  8. 学振申請書を磨き上げるポイント ~自己評価欄 編(前編)~

注目情報

ピックアップ記事

  1. ブラム・イッター アジリジン合成 Blum-Ittah Aziridine Synthesis
  2. 森田浩介 Kosuke Morita
  3. ファヴォルスキー転位 Favorskii Rearrangement
  4. 幾何学の定理を活用したものづくり
  5. 水中マクロラクタム化を加速する水溶性キャビタンド
  6. 畠山琢次 Takuji Hatakeyama
  7. 有機機能材料 基礎から応用まで
  8. 界面活性剤のWEB検索サービスがスタート
  9. 健康食品から未承認医薬成分
  10. ロゼムンド・リンドセー ポルフィリン合成 Rothemund-Lindsey Porphyrin Synthesis

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年11月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

2024年ノーベル化学賞は、「タンパク質の計算による設計・構造予測」へ

2024年10月9日、スウェーデン王立科学アカデミーは、2024年のノーベル化学賞を発表しました。今…

デミス・ハサビス Demis Hassabis

デミス・ハサビス(Demis Hassabis 1976年7月27日 北ロンドン生まれ) はイギリス…

【書籍】化学における情報・AIの活用: 解析と合成を駆動する情報科学(CSJカレントレビュー: 50)

概要これまで化学は,解析と合成を両輪とし理論・実験を行き来しつつ発展し,さまざまな物質を提供…

有機合成化学協会誌2024年10月号:炭素-水素結合変換反応・脱芳香族的官能基化・ピクロトキサン型セスキテルペン・近赤外光反応制御・Benzimidazoline

有機合成化学協会が発行する有機合成化学協会誌、2024年10月号がオンライン公開されています。…

レジオネラ菌のはなし ~水回りにはご注意を~

Tshozoです。筆者が所属する組織の敷地に大きめの室外冷却器がありほぼ毎日かなりの音を立て…

Pdナノ粒子触媒による1,3-ジエン化合物の酸化的アミノ化反応の開発

第629回のスポットライトリサーチは、関西大学大学院 理工学研究科(触媒有機化学研究室)博士課程後期…

第4回鈴木章賞授賞式&第8回ICReDD国際シンポジウム開催のお知らせ

計算科学,情報科学,実験科学の3分野融合による新たな化学反応開発に興味のある方はぜひご参加ください!…

光と励起子が混ざった準粒子 ”励起子ポラリトン”

励起子とは半導体を励起すると、電子が価電子帯から伝導帯に移動する。価電子帯には電子が抜けた後の欠…

三員環内外に三連続不斉中心を構築 –NHCによる亜鉛エノール化ホモエノラートの精密制御–

第 628 回のスポットライトリサーチは、東北大学大学院薬学研究科 分子薬科学専…

丸岡 啓二 Keiji Maruoka

丸岡啓二 (まるおか けいじ)は日本の有機化学者である。京都大学大学院薬学研究科 特任教授。専門は有…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP