[スポンサーリンク]

化学者のつぶやき

全フッ素置換シクロプロピル化試薬の開発

[スポンサーリンク]

ペンタフルオロシクロプロピル(PFCP)基をもつ新たなスルホニウム塩が開発された。本試薬を用いた可視光駆動型C–H官能基化反応により種々の生物活性ヘテロアレーンにPFCP基が導入できた

研究の概要

フルオロアルキル基は医農薬品に頻出の構造である。酸化的代謝に安定で、フッ素の置換パターンによって異なる物理化学的性質を付与することができる。このことから、様々なフルオロアルキル基が創薬研究に利用されてきた。最近では、ヘプタフルオロイソプロピル基をもつNicofluproleやPyrifluquinazonなどが上市され、安全かつ有効な殺虫剤として注目される(図1A)[1]。新規フルオロアルキル基は創薬に大きく貢献するが、探索合成に積極的に利用するには、簡便な導入法が求められる。

今回、著者らはシクロプロピル基のフッ素置換体である、ペンタフルオロシクロプロピル基(PFCP基)に着目した(図1B)。PFCP基はヘプタフルオロイソプロピル基に比べ、ファンデルワールス体積が小さく、環状構造ゆえ剛直である。また、p共役系との共役相互作用から、コンフォメーションが固定される[2]。ヘプタフルオロイソプロピル基と似て非なる物性を示すPFCP基は、医農薬品開発への貢献が期待されるが、PFCP基の直接的導入法の報告はなかった[3]

これまで、梅本試薬やそのチアントレン誘導体は、フルオロアルキル化反応に広く利用されてきた(図1C)[4]。著者らは、容易にフルオロアルキルラジカルを生成するスルホニウム塩に着目し、PFCP基をもつ新たなフルオロアルキル化試薬を合成した。実際に5-(ペンタフルオロシクロプロピル)ジベンゾチオフェニウムトリフラート(1)を用いると、可視光照射下、幅広いアレーンへPFCP基を導入できた(図1D)。

図1. (A) ヘプタフルオロイソプロピル基を含む殺虫剤の例、(B) PFCPの構造的特徴、(C) フルオロアルキル化試薬の例、(D) 本研究

 

Pentafluorocyclopropanation of (Hetero)arenes Using Sulfonium Salts: Applications in Late-Stage Functionalization

Feng, Z.; Riemann, L.; Guo, Z.; Herrero, D.; Simon, M.; Golz, C.; Mata, R. A.; Alcarazo, M. Angew. Chem., Int. Ed. 2023, 62, e202306764.

DOI:  10.1002/anie.202306764

論文著者の紹介

研究者 : Manuel Alcarazo

研究者の経歴

–2000                                                B.Sc., the University of Seville, Spain
2000–2002               M.Sc., the University of Seville, Spain (Prof. Rosario Fernández)
2002–2005               Ph.D., the Institute of Chemical Research, Spain (Dr. José M. Lassaletta)
2005–2008               Postdoc, the Max Planck Institute for Coal Research, Germany (Prof. Alois Fürstner)
2009–2015               Independent Junior Group Leader at the Max Planck Institute for Coal Research, Germany
2015–            Professor, University of Göttingen, Germany
2017–                                                Director of the Institute of Organic and Biomolecular Chemistry, University of Göttingen, Germany

研究内容:新規カチオン性リン配位子の開発、電子求引基の新しい転位試薬の設計と合成、キラルカチオン配位子とその触媒反応への応用

論文の概要

まず、著者らはアリールチオラートから合成したトリフルオロビニルスルフィド5を、[2+1]シクロプロパン化反応とmCPBA酸化によりスルホキシド7へと変換した(図2A)[2]。その後、7をトリフルオロメタンスルホン酸無水物と反応させ、スルホニウム塩1へ導いた。

検討の結果、著者らはヘテロアレーンに対し、NaHCO3および1を作用させ、可視光を照射することで、EDA錯体の形成を起点とするC–Hペンタフルオロシクロプロパン化反応が進行することを見いだした(図2B左)。ただし、適用可能な基質はTryptophane誘導体8aをはじめとする、電子豊富なヘテロアレーンのみであった。Caffeine(8b)などの電子不足なヘテロアレーンに対しては、先述の条件に触媒量のルテニウム錯体を加えることでPFCP基を導入することができる(図2B右)。

次に、推定反応経路を示す(図2C)。まず、EDA錯体(1+8)の光誘起電子移動もしくはルテニウム触媒(Ru2+*)による1の一電子還元で、PFCPラジカル3を生成する。続いて、3がヘテロアレーンに付加したのち、ルテニウム触媒(Ru3+)または1による一電子酸化を経て生成物9を与える。

各生成物のX線結晶構造解析から、PFCP基のベンジル位C–F結合はヘテロ環と直交することがわかった。ベンジル位C–F結合とヘテロ環が平行になるヘプタフルオロイソプロピル基とは異なる傾向をもつことが確認できた(詳細は論文参照)。

図2. (A)スルホニウム塩の合成経路、(B)最適条件、(C)推定反応経路

以上、Alcarazoらは新規フルオロアルキル化試薬を報告した。この試薬を用いることで、種々のヘテロアレーンへのPFCP基の導入が可能となった。今後、含PFCP医農薬品が開発されることを期待する。

参考文献

  1. (a) El Qacemi, S. Rendine, P. Maienfisch, in Fluorine in Life Sciences: Pharmaceuticals, Medicinal Diagnostic and Agro- chemicals (Eds.: G. Haufe, F. Leroux), Elsevier Inc., London, 2019, 607–623 (b) Parmentier, C.; Baze, A.; Untrau, M.; Kampkoetter, A.; Lasserre, D.; Richert, L. Evaluation of Human Relevance of Nicofluprole-Induced Rat Thyroid Disruption. Toxicol. Appl. Pharmacol.2022435, 115831. DOI: 10.1016/j.taap.2021.115831 (c) Jeanmart, S.; Edmunds, A. J. F.; Lamberth, C.; Pouliot, M.; Morris, J. A. Synthetic Approaches to the 2019–2020 New Agrochemicals. Synthesis. 2023, a-2142-8961. DOI:10.1055/a-2142-8961 (d) Kareh, C.; Nemer, N. Evaluation of Insecticides in the Management of Whiteflies (Bemisia Tabaci Gennadius) and Their Impacts on Yield of Eggplants. ujar 202311, 715–722. DOI: 10.13189/ujar.2023.110405 (e) Kang, M. A.; Seo, M. J.; Hwang, I. C.; Jang, C.; Park, H. J.; Yu, Y. M.; Youn, Y. N. Insecticidal Activity and Feeding Behavior of the Green Peach Aphid, Myzus Persicae, after Treatment with Nano Types of Pyrifluquinazon. J. Asia Pac. Entomol. 201215, 533–541. DOI: 10.1016/j.aspen.2012.05.015
  2. Shen, Q.; Wells, C.; Traetteberg, M.; Bohn, R. K.; Willis, A.; Knee, J. Molecular Structure and Conformation of Cyclopropylbenzene as Determined by Ab Initio Molecular Orbital Calculations, Pulsed-Jet Fourier Transform Microwave Spectroscopic, and Gas-Phase Electron Diffraction Investigations. J. Org. Chem. 2001, 66, 5840–5845. DOI: 10.1021/jo010293u
  3. (a) Liu, R.; Hu, J. Synthesis of Aryl Perfluorocyclopropyl Ethers via [2+1] Cyclopropanation Using TMSCF2Br Reagent. Org. Lett 202224, 3589–3593. DOI: 10.1021/acs.orglett.2c00958 (b) Yang, Z.-Y. Preparation of Highly Fluorinated Cyclopropanes and Ring-Opening Reactions with Halogens. J. Org. Chem. 2003, 68, 4410–4416. DOI: 10.1021/jo030014y
  4. (a) Feng, Z.; Marset, X.; Tostado, J.; Kircher, J.; She, Z.; Golz, C.; Mata, R. A.; Simon, M.; Alcarazo, M. 5‐(Trifluorovinyl)Dibenzothiophenium Triflate: Introducing the 1,1,2‐Trifluoroethylene Tether in Drug‐Like Structures. Chemistry A European J 202329, e202203966. DOI: 1002/chem.202203966 (b)Jia, H.; Häring, A. P.; Berger, F.; Zhang, L.; Ritter, T. Trifluoromethyl Thianthrenium Triflate: A Readily Available Trifluoromethylating Reagent with Formal CF3+, CF3, and CF3Reactivity. J. Am. Chem. Soc. 2021143, 7623–7628. DOI: 10.1021/jacs.1c02606 (c) Le, C.; Chen, T. Q.; Liang, T.; Zhang, P.; MacMillan, D. W. C. A Radical Approach to the Copper Oxidative Addition Problem: Trifluoromethylation of Bromoarenes. Science 2018360, DOI: 1010–1014. 10.1126/science.aat4133 (d) Umemoto, T.; Ishihara, S. Power-Variable Electrophilic Trifluoromethylating Agents. S-, Se-, and Te-(Trifluoromethyl)Dibenzothio-, -Seleno-, and -Tellurophenium Salt System. J. Am. Chem. Soc. 1993115, 2156–2164. DOI: 10.1021/ja00059a009
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. ウッドワード・ホフマン則を打ち破る『力学的活性化』
  2. 樹脂コンパウンド材料におけるマテリアルズ・インフォマティクスの活…
  3. 光照射下に繰り返し運動をおこなう分子集合体
  4. 日本薬学会第137年会  付設展示会ケムステキャンペーン
  5. 飽和C–H結合を直接脱離基に変える方法
  6. 第96回日本化学会付設展示会ケムステキャンペーン!Part II…
  7. 第99回日本化学会年会 付設展示会ケムステキャンペーン Part…
  8. 個性あるTOC その②

注目情報

ピックアップ記事

  1. 株式会社メカノクロス – メカノケミストリーの社会実装に向けた企業の設立
  2. 重水は甘い!?
  3. セレノネイン selenoneine
  4. 青色LED和解:中村教授「日本の司法制度は腐ってる」
  5. プロリン ぷろりん proline
  6. マイクロ波加熱を用いた省エネ・CO2削減精製技術によりベリリウム鉱石の溶解に成功
  7. ベン・デイヴィス Ben G. Davis
  8. フルエッギン Flueggine
  9. アメリカの大学院生だってパーティするっつーの! 【アメリカで Ph.D. を取る –Qualification Exam の巻 後編】
  10. 「リチウムイオン電池用3D炭素電極の開発」–Caltech・Greer研より

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年12月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

藤多哲朗 Tetsuro Fujita

藤多 哲朗(ふじた てつろう、1931年1月4日 - 2017年1月1日)は日本の薬学者・天然物化学…

MI conference 2025開催のお知らせ

開催概要昨年エントリー1,400名超!MIに特化したカンファレンスを今年も開催近年、研究開発…

【ユシロ】新卒採用情報(2026卒)

ユシロは、創業以来80年間、“油”で「ものづくり」と「人々の暮らし」を支え続けている化学メーカーです…

Host-Guest相互作用を利用した世界初の自己修復材料”WIZARDシリーズ”

昨今、脱炭素社会への実現に向け、石油原料を主に使用している樹脂に対し、メンテナンス性の軽減や材料の長…

有機合成化学協会誌2025年4月号:リングサイズ発散・プベルル酸・イナミド・第5族遷移金属アルキリデン錯体・強発光性白金錯体

有機合成化学協会が発行する有機合成化学協会誌、2025年4月号がオンラインで公開されています!…

第57回若手ペプチド夏の勉強会

日時2025年8月3日(日)~8月5日(火) 合宿型勉強会会場三…

人工光合成の方法で有機合成反応を実現

第653回のスポットライトリサーチは、名古屋大学 学際統合物質科学研究機構 野依特別研究室 (斎藤研…

乙卯研究所 2025年度下期 研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

次世代の二次元物質 遷移金属ダイカルコゲナイド

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP