[スポンサーリンク]

スポットライトリサーチ

自己会合・解離機構に基づく蛍光応答性プローブを用いたエクソソーム高感度検出

[スポンサーリンク]

第481回のスポットライトリサーチは、東北大学理学研究科化学専攻 分析化学研究室(西澤研究室)の大平 魁人(おおひら かいと)さんにお願いしました。

本プレスリリースの研究内容は、エクソソームの検出についてです。エクソソームはほぼ全ての細胞が放出する細胞外小胞で、細胞の機能発現や疾患との関連性が報告されているなど、新たな細胞間コミュニケーションの手段として注目されています。そのため、エクソソームが絡む生命現象の本質を理解し、これに基づいた医薬応用を進めていく上で、エクソソーム解析技術が必要不可欠です。特に簡便かつ迅速にエクソソームを検出・定量しうる技術の開発は重要な課題です。そこで本研究グループでは、自己会合・解消機構に基づく新たなエクソソーム検出用蛍光プローブ(ApoC-TRC12)を開発することに成功しました。

この研究成果は、「ACS Sensors」誌に掲載され、プレスリリースにも成果の概要が公開されています。

Self-assembly and disassembly of membrane curvature-sensing peptide-based deep-red fluorescent probe for highly sensitive sensing of exosomes

Kaito Ohira, Yusuke Sato, and Seiichi Nishizawa

DOI: doi.org/10.1021/acssensors.2c02498

指導教員の佐藤 雄介 准教授より大平さんについてコメントを頂戴いたしました!

当研究室では小分子から人工核酸やペプチドまで多彩な分子を活用し組み合わせて生体関連分子・構造を検出・解析する分子プローブを中心としたバイオ分析化学研究を進めています。本研究はエクソソームのような小さい小胞の脂質膜を狙ったプローブに関するもので、大平君は新しいタイプの蛍光応答部位を設計し高感度検出プローブを開発しました。生体内で高曲率性脂質膜と結合するタンパク質の結合様式を分子プローブ設計に用いるアイデアそのものは以前に報告していましたが(RSC Adv., 2020, 10, 38323.)、どういう分子改良を施してプローブの機能を向上させるか、という課題に大平君が取り組んでくれました。大平君は実験量もさることながら、結果を共有し自分の考え・考察を伝えてくれる熱意があり、ハードルがあっても一緒に乗り越えたい、と強く思わせてくれる学生です。論文を自分で書きたいと言ってくれて、初稿を持ってきてくれてからは「論文見てくれましたか?」と、(動き出しの遅い)私にプレッシャー(?)をかけてくれたのは、とても良い刺激になりました。大平君は春から企業に就職しますが、自分で考えて実験をする・考察する・討論する・論文としてデータをまとめることをやりきった経験が本人の大きな自信につながり、社会でも活躍してくれると信じています。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

エクソソームとは、ほぼ全ての細胞が放出する細胞外小胞(直径100 nm程度)であり、細胞間での受け渡しを介して、様々な生命現象や疾患に関与しています。エクソソームの機能解明や医薬応用に展開する上で、その解析技術は必要不可欠です。私たちの研究室では、エクソソームの小ささに起因して表面の脂質膜が高い曲率を持つことに着目して、こうした高曲率性脂質膜に現れる脂質構造の緩み(脂質パッキング欠損 :図1) を認識する両親媒性αヘリックスペプチド(AHペプチド)をベースとした分子プローブの開発を進めてきました。これまでにアポリポタンパク質A-I のC末端領域(ApoC)に疎水場応答性型色素(Nile Red)を連結した蛍光プローブ(ApoC-NR)を設計・合成し、これがエクソソームの蛍光検出に有用であることを実証してきました(RSC Adv., 2020, 10, 38323.)。ApoC-NRはエクソソームと混ぜるだけで発蛍光応答を示すため、既存の抗体法と比べて簡便、迅速な検出が可能ですが、その検出限界は105 個/μL程度であり、実用的な解析には検出感度の向上が必要でした。

図1. エクソソームのような高い曲率性質膜 (左) では曲率の小さい脂質膜 (右) と比較して脂質パッキング欠損 (赤) が多く現れる。

本研究では、長い炭素鎖 (C12) を修飾したシアニン色素TR (Thiazole Red) を蛍光応答部位として導入することで、高感度検出が可能なプローブApoC-TRC12 (図2) を開発しました。

ApoC-TRC12は自己会合を介してTR単体由来の蛍光が著しく抑制されています。ここにエクソソームを添加すると、自己会合が解消されプローブがエクソソームの脂質膜に結合することで、蛍光強度が著しく増大します。このように自己会合・解離機構を利用することで明瞭な発蛍光応答を示すことができ、検出感度の大幅な向上を達成しました(検出限界:~103 個/μL)。加えて、ApoC-TRC12 はエクソソームサイズの小胞 (直径130 nm) に対して選択的に応答し、世界最強の結合力 (Kd = 0.37 μM)を持つことから、高感度かつエクソソーム選択的な検出・定量ツールになることが期待できます。

図2. ApoC-TRC12の自己会合・解消に基づくエクソソーム検出機構

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

ApoC-TRC12の蛍光応答を解析する過程で観測されたTR部位由来の近赤外蛍光(820 nm)の解釈です。TRは主に核酸検出などに用いられてきた分子構造ですが、このような長波長蛍光に関しては論文をどれだけ探しても報告がなく非常に扱いに迷いました。しかし、類似した非対称シアニン色素TO (Thiazole Orange) が会合体形成によって蛍光が長波長化しうるという報告を見つけたことをきっかけに、自己会合を介して形成したプローブ凝集体構造においてTR部位がH会合体様構造を取るのでは、という仮説を立てました。そして、様々な観点から測定・解析を行った結果、これを実証するとともに、こうした長波長化蛍光の発現において長鎖アルキル鎖が重要な役割を果たすことを見出しました。これは論文を投稿する上で非常に重要な知見の1つになってくれました。

正直なところ全く意図しておらず、偶然発見できた知見なのですが、これも化学の面白さなのかなと思っています。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

エクソソームに対して優れた蛍光応答を示す蛍光プローブを見つけるまでが大変でした。特に、シアニン色素は様々な種類を試したのですが、合成したAHペプチドプローブ単体ではほとんど消光しなかったり、そもそもエクソソームに対して蛍光応答を示さないなど思うようにいかないことが多かったです。また、最終的にペプチド部位はApoCに落ち着きましたが、一時期は別のものを探索して合成していたので、シアニン色素との組み合わせとしては相当多くの蛍光プローブを合成してエクソソーム検出に試していました。

この上手くいかない時期は時間との勝負だと思っていたので、数種類の蛍光プローブを合成・測定をしている間に論文を基に、次の候補を探しておき準備することをひたすら繰り返していました。思い出すと、研究室の合成用の全てのオイルバス、蛍光測定装置を1日中占領していることが多々ありましたね。ご迷惑をおかけしました。

その甲斐あって、先行研究で開発したプローブや市販の蛍光プローブよりも高感度で蛍光検出できるApoC-TRC12 を開発できたときは、大きな達成感を得ることができました。

Q4. 将来は化学とどう関わっていきたいですか?

本研究を通して、課題達成のためにはブレイクスルーとなる「何か」見つける、見落とさないことが非常に大切だと痛感しました。今回はその「何か」を見つけることができたからこそ、1年以上停滞していた研究が飛躍的に進み、論文にまとめることができました。今後それは、あるデータなのか、ある論文なのか、偶然できた物質なのかわかりませんが、その「何か」をどん欲に探し続けることができる人でありたいと思っています。

また、今回その「何か」を見つけることができたのは、仲間が持っている自分にはない知見や考え方に助けられたからです。今後も「何か」を見つけるチャンスを増やしていくためにも人との対話は大事にしていきたいと思います。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

ここまで読んでいただきありがとうございます。

化学は実験ありきの学問なので、まずは、研究を進めていく上で手を動かすことが何より大事だと思います。私もとにかくよく分からなかったら思いついた化合物を合成したり、データをとってそこから考えられる事象や論理を組み立てていくということをしていました。そのおかげで、研究の停滞を打破することができる (時には訳のわからない) データが取れることがあるので、迷ったときはぜひ手を動かしてみてください。

あと、夜はしっかり寝てください。

最後になりますが、ご指導いただいた雄介さん、西澤先生をはじめ、研究室のメンバー、学内学外でお世話になった方々、支えてくれた家族、そして私にこのような研究紹介の場を提供していただいたChem-Stationスタッフの皆様にこの場を借りて心より感謝申し上げます。

研究者の略歴

名前:大平 魁人(おおひら かいと)

所属:東北大学理学研究科化学専攻 分析化学研究室

専門:分析化学

略歴:

2021年3月 東北大学 理学部化学科 卒業

2021年4月 東北大学 理学研究科化学専攻 入学

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 有機化学を俯瞰する –古代ギリシャ哲学から分子説の誕生まで–【前…
  2. 真空ポンプはなぜ壊れる?
  3. 「つける」と「はがす」の新技術|分子接合と表面制御 R3
  4. 東日本大震災から1年
  5. イミデートラジカルを経由するアルコールのβ位選択的C-Hアミノ化…
  6. 島津製作所がケムステVシンポに協賛しました
  7. 糖鎖を直接連結し天然物をつくる
  8. 239th ACS National Meeting に行ってき…

注目情報

ピックアップ記事

  1. 可視光応答性光触媒を用いる高反応性アルキンの生成
  2. 山口健太郎 Kentaro Yamaguchi
  3. ローゼンムント還元 Rosenmund Reduction
  4. 筑波山
  5. リンだ!リンだ!ホスフィン触媒を用いたメチルアミノ化だ!
  6. 熊田 誠 Makoto Kumada
  7. ビス(ヘキサフルオロアセチルアセトナト)銅(II)水和物 : Bis(hexafluoroacetylacetonato)copper(II) Hydrate
  8. ヘイオース・パリッシュ・エダー・ザウアー・ウィーチャート反応 Hajos-Parrish-Eder-Sauer-Wiechert Reaction
  9. 科学予算はイギリスでも「仕分け対象」
  10. コーンフォース転位 Cornforth Rearrangement

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年2月
 12345
6789101112
13141516171819
20212223242526
2728  

注目情報

最新記事

光励起で芳香族性を獲得する分子の構造ダイナミクスを解明!

第 654 回のスポットライトリサーチは、分子科学研究所 協奏分子システム研究セ…

藤多哲朗 Tetsuro Fujita

藤多 哲朗(ふじた てつろう、1931年1月4日 - 2017年1月1日)は日本の薬学者・天然物化学…

MI conference 2025開催のお知らせ

開催概要昨年エントリー1,400名超!MIに特化したカンファレンスを今年も開催近年、研究開発…

【ユシロ】新卒採用情報(2026卒)

ユシロは、創業以来80年間、“油”で「ものづくり」と「人々の暮らし」を支え続けている化学メーカーです…

Host-Guest相互作用を利用した世界初の自己修復材料”WIZARDシリーズ”

昨今、脱炭素社会への実現に向け、石油原料を主に使用している樹脂に対し、メンテナンス性の軽減や材料の長…

有機合成化学協会誌2025年4月号:リングサイズ発散・プベルル酸・イナミド・第5族遷移金属アルキリデン錯体・強発光性白金錯体

有機合成化学協会が発行する有機合成化学協会誌、2025年4月号がオンラインで公開されています!…

第57回若手ペプチド夏の勉強会

日時2025年8月3日(日)~8月5日(火) 合宿型勉強会会場三…

人工光合成の方法で有機合成反応を実現

第653回のスポットライトリサーチは、名古屋大学 学際統合物質科学研究機構 野依特別研究室 (斎藤研…

乙卯研究所 2025年度下期 研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

次世代の二次元物質 遷移金属ダイカルコゲナイド

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP