[スポンサーリンク]

スポットライトリサーチ

自己会合・解離機構に基づく蛍光応答性プローブを用いたエクソソーム高感度検出

[スポンサーリンク]

第481回のスポットライトリサーチは、東北大学理学研究科化学専攻 分析化学研究室(西澤研究室)の大平 魁人(おおひら かいと)さんにお願いしました。

本プレスリリースの研究内容は、エクソソームの検出についてです。エクソソームはほぼ全ての細胞が放出する細胞外小胞で、細胞の機能発現や疾患との関連性が報告されているなど、新たな細胞間コミュニケーションの手段として注目されています。そのため、エクソソームが絡む生命現象の本質を理解し、これに基づいた医薬応用を進めていく上で、エクソソーム解析技術が必要不可欠です。特に簡便かつ迅速にエクソソームを検出・定量しうる技術の開発は重要な課題です。そこで本研究グループでは、自己会合・解消機構に基づく新たなエクソソーム検出用蛍光プローブ(ApoC-TRC12)を開発することに成功しました。

この研究成果は、「ACS Sensors」誌に掲載され、プレスリリースにも成果の概要が公開されています。

Self-assembly and disassembly of membrane curvature-sensing peptide-based deep-red fluorescent probe for highly sensitive sensing of exosomes

Kaito Ohira, Yusuke Sato, and Seiichi Nishizawa

DOI: doi.org/10.1021/acssensors.2c02498

指導教員の佐藤 雄介 准教授より大平さんについてコメントを頂戴いたしました!

当研究室では小分子から人工核酸やペプチドまで多彩な分子を活用し組み合わせて生体関連分子・構造を検出・解析する分子プローブを中心としたバイオ分析化学研究を進めています。本研究はエクソソームのような小さい小胞の脂質膜を狙ったプローブに関するもので、大平君は新しいタイプの蛍光応答部位を設計し高感度検出プローブを開発しました。生体内で高曲率性脂質膜と結合するタンパク質の結合様式を分子プローブ設計に用いるアイデアそのものは以前に報告していましたが(RSC Adv., 2020, 10, 38323.)、どういう分子改良を施してプローブの機能を向上させるか、という課題に大平君が取り組んでくれました。大平君は実験量もさることながら、結果を共有し自分の考え・考察を伝えてくれる熱意があり、ハードルがあっても一緒に乗り越えたい、と強く思わせてくれる学生です。論文を自分で書きたいと言ってくれて、初稿を持ってきてくれてからは「論文見てくれましたか?」と、(動き出しの遅い)私にプレッシャー(?)をかけてくれたのは、とても良い刺激になりました。大平君は春から企業に就職しますが、自分で考えて実験をする・考察する・討論する・論文としてデータをまとめることをやりきった経験が本人の大きな自信につながり、社会でも活躍してくれると信じています。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

エクソソームとは、ほぼ全ての細胞が放出する細胞外小胞(直径100 nm程度)であり、細胞間での受け渡しを介して、様々な生命現象や疾患に関与しています。エクソソームの機能解明や医薬応用に展開する上で、その解析技術は必要不可欠です。私たちの研究室では、エクソソームの小ささに起因して表面の脂質膜が高い曲率を持つことに着目して、こうした高曲率性脂質膜に現れる脂質構造の緩み(脂質パッキング欠損 :図1) を認識する両親媒性αヘリックスペプチド(AHペプチド)をベースとした分子プローブの開発を進めてきました。これまでにアポリポタンパク質A-I のC末端領域(ApoC)に疎水場応答性型色素(Nile Red)を連結した蛍光プローブ(ApoC-NR)を設計・合成し、これがエクソソームの蛍光検出に有用であることを実証してきました(RSC Adv., 2020, 10, 38323.)。ApoC-NRはエクソソームと混ぜるだけで発蛍光応答を示すため、既存の抗体法と比べて簡便、迅速な検出が可能ですが、その検出限界は105 個/μL程度であり、実用的な解析には検出感度の向上が必要でした。

図1. エクソソームのような高い曲率性質膜 (左) では曲率の小さい脂質膜 (右) と比較して脂質パッキング欠損 (赤) が多く現れる。

本研究では、長い炭素鎖 (C12) を修飾したシアニン色素TR (Thiazole Red) を蛍光応答部位として導入することで、高感度検出が可能なプローブApoC-TRC12 (図2) を開発しました。

ApoC-TRC12は自己会合を介してTR単体由来の蛍光が著しく抑制されています。ここにエクソソームを添加すると、自己会合が解消されプローブがエクソソームの脂質膜に結合することで、蛍光強度が著しく増大します。このように自己会合・解離機構を利用することで明瞭な発蛍光応答を示すことができ、検出感度の大幅な向上を達成しました(検出限界:~103 個/μL)。加えて、ApoC-TRC12 はエクソソームサイズの小胞 (直径130 nm) に対して選択的に応答し、世界最強の結合力 (Kd = 0.37 μM)を持つことから、高感度かつエクソソーム選択的な検出・定量ツールになることが期待できます。

図2. ApoC-TRC12の自己会合・解消に基づくエクソソーム検出機構

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

ApoC-TRC12の蛍光応答を解析する過程で観測されたTR部位由来の近赤外蛍光(820 nm)の解釈です。TRは主に核酸検出などに用いられてきた分子構造ですが、このような長波長蛍光に関しては論文をどれだけ探しても報告がなく非常に扱いに迷いました。しかし、類似した非対称シアニン色素TO (Thiazole Orange) が会合体形成によって蛍光が長波長化しうるという報告を見つけたことをきっかけに、自己会合を介して形成したプローブ凝集体構造においてTR部位がH会合体様構造を取るのでは、という仮説を立てました。そして、様々な観点から測定・解析を行った結果、これを実証するとともに、こうした長波長化蛍光の発現において長鎖アルキル鎖が重要な役割を果たすことを見出しました。これは論文を投稿する上で非常に重要な知見の1つになってくれました。

正直なところ全く意図しておらず、偶然発見できた知見なのですが、これも化学の面白さなのかなと思っています。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

エクソソームに対して優れた蛍光応答を示す蛍光プローブを見つけるまでが大変でした。特に、シアニン色素は様々な種類を試したのですが、合成したAHペプチドプローブ単体ではほとんど消光しなかったり、そもそもエクソソームに対して蛍光応答を示さないなど思うようにいかないことが多かったです。また、最終的にペプチド部位はApoCに落ち着きましたが、一時期は別のものを探索して合成していたので、シアニン色素との組み合わせとしては相当多くの蛍光プローブを合成してエクソソーム検出に試していました。

この上手くいかない時期は時間との勝負だと思っていたので、数種類の蛍光プローブを合成・測定をしている間に論文を基に、次の候補を探しておき準備することをひたすら繰り返していました。思い出すと、研究室の合成用の全てのオイルバス、蛍光測定装置を1日中占領していることが多々ありましたね。ご迷惑をおかけしました。

その甲斐あって、先行研究で開発したプローブや市販の蛍光プローブよりも高感度で蛍光検出できるApoC-TRC12 を開発できたときは、大きな達成感を得ることができました。

Q4. 将来は化学とどう関わっていきたいですか?

本研究を通して、課題達成のためにはブレイクスルーとなる「何か」見つける、見落とさないことが非常に大切だと痛感しました。今回はその「何か」を見つけることができたからこそ、1年以上停滞していた研究が飛躍的に進み、論文にまとめることができました。今後それは、あるデータなのか、ある論文なのか、偶然できた物質なのかわかりませんが、その「何か」をどん欲に探し続けることができる人でありたいと思っています。

また、今回その「何か」を見つけることができたのは、仲間が持っている自分にはない知見や考え方に助けられたからです。今後も「何か」を見つけるチャンスを増やしていくためにも人との対話は大事にしていきたいと思います。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

ここまで読んでいただきありがとうございます。

化学は実験ありきの学問なので、まずは、研究を進めていく上で手を動かすことが何より大事だと思います。私もとにかくよく分からなかったら思いついた化合物を合成したり、データをとってそこから考えられる事象や論理を組み立てていくということをしていました。そのおかげで、研究の停滞を打破することができる (時には訳のわからない) データが取れることがあるので、迷ったときはぜひ手を動かしてみてください。

あと、夜はしっかり寝てください。

最後になりますが、ご指導いただいた雄介さん、西澤先生をはじめ、研究室のメンバー、学内学外でお世話になった方々、支えてくれた家族、そして私にこのような研究紹介の場を提供していただいたChem-Stationスタッフの皆様にこの場を借りて心より感謝申し上げます。

研究者の略歴

名前:大平 魁人(おおひら かいと)

所属:東北大学理学研究科化学専攻 分析化学研究室

専門:分析化学

略歴:

2021年3月 東北大学 理学部化学科 卒業

2021年4月 東北大学 理学研究科化学専攻 入学

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. アクセラレーションプログラム 「BRAVE 2021 Sprin…
  2. メタルフリー C-H活性化~触媒的ホウ素化
  3. 無金属、温和な条件下で多置換ピリジンを構築する
  4. 第一手はこれだ!:古典的反応から最新反応まで|第6回「有機合成実…
  5. 2011年人気記事ランキング
  6. 化学実験系YouTuber
  7. Org. Proc. Res. Devのススメ
  8. 有機合成化学協会誌10月号:不飽和脂肪酸代謝産物・フタロシアニン…

注目情報

ピックアップ記事

  1. ロナルド・ブレズロウ賞・受賞者一覧
  2. 有機合成化学協会誌2022年3月号:トリフリル基・固相多点担持ホスフィン・触媒的アリル化・スルホニル基・荷電π電子系/ 菅 敏幸 先生追悼
  3. 生体分子機械の集団運動の制御に成功:環境適応能や自己修復機能の発見
  4. 北川 進 Susumu Kitagawa
  5. 資生堂、製品開発の可能性を大きく広げる新規乳化法開発に成功:プレスリリースから化粧品研究の一端を垣間見る
  6. ナトリウム Sodium -食塩やベーキングパウダーに使用
  7. 第108回―「Nature Chemistryの編集長として」Stuart Cantrill博士
  8. 夏の必需品ー虫除けスプレーあれこれ
  9. 構造式の効果
  10. アルケンとニトリルを相互交換する

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年2月
 12345
6789101112
13141516171819
20212223242526
2728  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP