[スポンサーリンク]

化学者のつぶやき

光分解性シアニン色素をADCのリンカーに組み込む

[スポンサーリンク]

 

抗体薬物複合体 (ADC: Antibody Drug Conjugate)は、タンパク質と特異的に結合できる抗体に小分子薬を接続することで、がん細胞選択的に小分子薬を作用させる分子標的薬です(図 1)。ADCは2000年代から急成長しており、既に二つの承認医薬が登場しています。

 

 

図1. a ADCの作用機序[1]. まずがん細胞特異的に発現している膜タンパク質に抗体が結合し, ADCが細胞内に取り込まれる. リソソームにADCが運ばれるとリンカーが開裂し, 小分子薬が放出される. 小分子薬は標的タンパクに結合することで生体機能を阻害し, 細胞死に導く. b FDAから承認を受けたADC (T-DM1).

図1. a ADCの作用機序[1]. まずがん細胞特異的に発現している膜タンパク質に抗体が結合し, ADCが細胞内に取り込まれる. リソソームにADCが運ばれるとリンカーが開裂し, 小分子薬が放出される. 小分子薬は標的タンパクに結合することで生体機能を阻害し, 細胞死に導く. b FDAから承認を受けたADC (T-DM1).

ケムステのADCに関する記事は以下参照。

ADCのさらなる効率向上や毒性の低減において、小分子薬を狙った場所で分離するリンカー開裂反応の開発がカギを握ります。

今回はそのような観点から、最近報告された「ADCのリンカーに対するシアニン色素の導入」について簡単にお話しましょう。

 

近赤外光で分解できるシアニン色素の開発

2014年にNational Cancer InstituteのSchnermannらは、近赤外光で分解し小分子薬を放出できるシアニン色素の開発に成功しました(図 2)。[2]

近赤外光は650-900 nmの波長域を指し、生体組織による吸収が小さいため高い浸透性(数cm程度)をもちます。

小分子薬が連結されたシアニン色素は、光照射によって1光子励起されると、酸化の付加を経てアルケンが開裂する。続いて、C4′-N結合が加水分解され、環状ウレアが生成する過程で小分子薬が放出されます。

 

図2 光分解性シアニン色素の分解機構

図2 光分解性シアニン色素の分解機構

 

ADCリンカーに組み込むと?

さらに最近、Schnermannらは、光分解性シアニン色素をADCのリンカーに組み込むことで近赤外光による小分子薬分離を初めて達成しました(図 3)。[3]

このADCは光照射されないかぎり小分子薬が放出されないため、がん細胞以外の組織への負担を低減できると考えられます。実用化にあたっては光分解性シアニン色素の化学安定性や光分解効率の向上が必要ですが、なかなかおもしろいアイデアではないかと思います。

図3. aシアニン色素への近赤外光照射によるADCの分解. b(左)赤丸は590 nmの光を照射した部位. 黒丸は光を照射しない部位. (右)腫瘍へのADC局在化を示した近赤外光イメージング. c 光照射後の近赤外光イメージング. 光照射した腫瘍のみ, シアニン色素が照射量依存的に多く分解している.

図3. aシアニン色素への近赤外光照射によるADCの分解. b(左)赤丸は590 nmの光を照射した部位. 黒丸は光を照射しない部位. (右)腫瘍へのADC局在化を示した近赤外光イメージング. c 光照射後の近赤外光イメージング. 光照射した腫瘍のみ, シアニン色素が照射量依存的に多く分解している.

 

関連文献

  1.  Chari, R. V. J.; Miller, M. L.; Widdison, W. C. Angew. Chem., Int. Ed. 2014, 53, 3796. DOI: 10.1002/anie.201307628
  2. Gorka, A. P.; Nani, R. R.; Zhu, J. J.; Mackem, S.; Schnermann, M. J.  J. Am. Chem. Soc. 2014136, 14153. DOI: 10.1021/ja5065203
  3. Nani, R. R.; Gorka, A. P.; Nagaya, T.; Kobayashi, H.; Schnermann, M. J.;Angew. Chem. Int. Ed. 2015, 54, 13635. DOI;: 10.1002/anie.201507391

 

関連書籍

bona

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 化学研究ライフハック :RSSリーダーで新着情報をチェック!20…
  2. 【追悼企画】不斉酸化反応のフロンティアー香月 勗
  3. Reaxys Ph.D Prize2019ファイナリスト発表!
  4. 最近の有機化学注目論文3
  5. センチメートルサイズで均一の有機分子薄膜をつくる!”…
  6. Nature Chemistry:Research Highli…
  7. 事故を未然に防ごう~確認しておきたい心構えと対策~
  8. この輪っか状の分子パないの!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. パターノ・ビューチ反応 Paterno-Buchi Reaction
  2. アンデルセン キラルスルホキシド合成 Andersen Chiral Sulfoxide Synthesis
  3. 塗る、刷る、printable!進化するナノインクと先端デバイス技術~無機材料と印刷技術で変わる工業プロセス~
  4. グラクソ、糖尿病治療薬「ロシグリタゾン」が単独療法無効のリスクを軽減と発表
  5. 第四回 期待したいものを創りだすー村橋哲郎教授
  6. 杏林製薬 耳鳴り治療薬「ネラメキサン」の開発継続
  7. アメリカで Ph.D. を取る –エッセイを書くの巻– (前編)
  8. 骨粗しょう症治療薬、乳がん予防効果も・米国立がん研究所
  9. 超原子結晶!TCNE!インターカレーション!!!
  10. フェン・チャン Feng Zhang

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

アレノフィルを用いるアレーンオキシドとオキセピンの合成

脱芳香族化を伴う直接的な酸化により芳香族化合物からアレーンオキシドとオキセピンを合成する手法が開発さ…

ケムステニュース 化学企業のグローバル・トップ50が発表【2020年版】

It's no secret that the COVID-19 pandemic ha…

スポットライトリサーチムービー:動画であなたの研究を紹介します

5年前、ケムステ15周年の際に新たな試みとしてはじめたコンテンツ「スポットライトリサーチ」。…

第110回―「動的配座を制御する化学」Jonathan Clayden教授

第110回の海外化学者インタビューは、ジョナサン・クレイデン教授です。マンチェスター大学化学科(訳注…

化学研究で役に立つデータ解析入門:エクセルでも立派な解析ができるぞ編

化学分野でのAIを使った研究が多数報告されていてデータ解析は流行のトピックとなっていますが、専門外か…

高分子化学をふまえて「神経のような動きをする」電子素子をつくる

第267回のスポットライトリサーチは、東北大学大学院工学研究科 バイオ工学専攻 三ツ石研究室 助教の…

アルケンのエナンチオ選択的ヒドロアリール化反応

パラジウム触媒を用いたアルケンの還元的Heck型ヒドロアリール化反応が開発された。容易に着脱可能なキ…

第109回―「サステイナブルな高分子材料の創製」Andrew Dove教授

第109回の海外化学者インタビューは、アンドリュー・ダヴ教授です。ワーウィック大学化学科に所属(訳注…

Chem-Station Twitter

PAGE TOP