[スポンサーリンク]

化学者のつぶやき

光分解性シアニン色素をADCのリンカーに組み込む

[スポンサーリンク]

 

抗体薬物複合体 (ADC: Antibody Drug Conjugate)は、タンパク質と特異的に結合できる抗体に小分子薬を接続することで、がん細胞選択的に小分子薬を作用させる分子標的薬です(図 1)。ADCは2000年代から急成長しており、既に二つの承認医薬が登場しています。

 

 

図1. a ADCの作用機序[1]. まずがん細胞特異的に発現している膜タンパク質に抗体が結合し, ADCが細胞内に取り込まれる. リソソームにADCが運ばれるとリンカーが開裂し, 小分子薬が放出される. 小分子薬は標的タンパクに結合することで生体機能を阻害し, 細胞死に導く. b FDAから承認を受けたADC (T-DM1).

図1. a ADCの作用機序[1]. まずがん細胞特異的に発現している膜タンパク質に抗体が結合し, ADCが細胞内に取り込まれる. リソソームにADCが運ばれるとリンカーが開裂し, 小分子薬が放出される. 小分子薬は標的タンパクに結合することで生体機能を阻害し, 細胞死に導く. b FDAから承認を受けたADC (T-DM1).

ケムステのADCに関する記事は以下参照。

ADCのさらなる効率向上や毒性の低減において、小分子薬を狙った場所で分離するリンカー開裂反応の開発がカギを握ります。

今回はそのような観点から、最近報告された「ADCのリンカーに対するシアニン色素の導入」について簡単にお話しましょう。

 

近赤外光で分解できるシアニン色素の開発

2014年にNational Cancer InstituteのSchnermannらは、近赤外光で分解し小分子薬を放出できるシアニン色素の開発に成功しました(図 2)。[2]

近赤外光は650-900 nmの波長域を指し、生体組織による吸収が小さいため高い浸透性(数cm程度)をもちます。

小分子薬が連結されたシアニン色素は、光照射によって1光子励起されると、酸化の付加を経てアルケンが開裂する。続いて、C4′-N結合が加水分解され、環状ウレアが生成する過程で小分子薬が放出されます。

 

図2 光分解性シアニン色素の分解機構

図2 光分解性シアニン色素の分解機構

 

ADCリンカーに組み込むと?

さらに最近、Schnermannらは、光分解性シアニン色素をADCのリンカーに組み込むことで近赤外光による小分子薬分離を初めて達成しました(図 3)。[3]

このADCは光照射されないかぎり小分子薬が放出されないため、がん細胞以外の組織への負担を低減できると考えられます。実用化にあたっては光分解性シアニン色素の化学安定性や光分解効率の向上が必要ですが、なかなかおもしろいアイデアではないかと思います。

図3. aシアニン色素への近赤外光照射によるADCの分解. b(左)赤丸は590 nmの光を照射した部位. 黒丸は光を照射しない部位. (右)腫瘍へのADC局在化を示した近赤外光イメージング. c 光照射後の近赤外光イメージング. 光照射した腫瘍のみ, シアニン色素が照射量依存的に多く分解している.

図3. aシアニン色素への近赤外光照射によるADCの分解. b(左)赤丸は590 nmの光を照射した部位. 黒丸は光を照射しない部位. (右)腫瘍へのADC局在化を示した近赤外光イメージング. c 光照射後の近赤外光イメージング. 光照射した腫瘍のみ, シアニン色素が照射量依存的に多く分解している.

 

関連文献

  1.  Chari, R. V. J.; Miller, M. L.; Widdison, W. C. Angew. Chem., Int. Ed. 2014, 53, 3796. DOI: 10.1002/anie.201307628
  2. Gorka, A. P.; Nani, R. R.; Zhu, J. J.; Mackem, S.; Schnermann, M. J.  J. Am. Chem. Soc. 2014136, 14153. DOI: 10.1021/ja5065203
  3. Nani, R. R.; Gorka, A. P.; Nagaya, T.; Kobayashi, H.; Schnermann, M. J.;Angew. Chem. Int. Ed. 2015, 54, 13635. DOI;: 10.1002/anie.201507391

 

関連書籍

[amazonjs asin=”1627035400″ locale=”JP” title=”Antibody-Drug Conjugates (Methods in Molecular Biology)”][amazonjs asin=”3319130803″ locale=”JP” title=”Antibody-Drug Conjugates: The 21st Century Magic Bullets for Cancer (AAPS Advances in the Pharmaceutical Sciences Series)”]
Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. MEDCHEM NEWS 31-2号「2020年度医薬化学部会賞…
  2. クリスマス化学史 元素記号Hの発見
  3. 3.11 14:46 ①
  4. 単純なアリルアミンから複雑なアリルアミンをつくる
  5. それは夢から始まったーベンゼンの構造提唱から150年
  6. 水溶性アクリルアミドモノマー
  7. 先端領域に携わりたいという秘めた思い。考えてもいなかったスタート…
  8. 化学系人材の、より良い将来選択のために

注目情報

ピックアップ記事

  1. 電子のやり取りでアセンの分子構造を巧みに制御
  2. 実例で分かるスケールアップの原理と晶析【終了】
  3. 『主鎖むき出し』の芳香族ポリマーの合成に成功 ~長年の難溶性問題を解決~
  4. 独BASF、米樹脂メーカーのジョンソンポリマー社を買収
  5. 杏林製薬、ノバルティス社と免疫抑制剤「KRP-203」に関するライセンス契約を締結
  6. タンニンでさび防ぐ効果 八王子の会社
  7. 第66回「物質の宇宙:未知の化合物を追い求めて」山本 隆文 准教授
  8. グリチルリチン酸 (glycyrrhizic acid)
  9. シェンヴィ イソニトリル合成 Shenvi Isonitrile Synthesis
  10. カルボラン carborane

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年1月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP