[スポンサーリンク]

一般的な話題

AlphaFold3の登場!!再びブレイクスルーとなりうるのか~実際にβ版を使用してみた~

[スポンサーリンク]

 

2021年にタンパク質の立体構造予測ツールであるAlphaFold2 (AF2) が登場し、様々な分野において非常に大きな影響力をもたらしました1。現時点でもAF2を用いた研究論文は多く、AF2報告論文の引用数は20000件を超えます。今回はNature誌に、AF2の改良版であり、かつ複合体の予測を行えるAF3が報告されたので、こちらについて紹介したいと思います。

Accurate structure prediction of biomolecular interactions with AlphaFold 3
Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf Ronneberger, Lindsay Willmore, Victor Bapst, Pushmeet Kohli, Max Jaderberg, Demis Hassabis, John M. Jumper et al., Nature 2024, under revised
DOI : 10.1038/s41586-024-07487-w

AlphaFold (AF) とは?

AFはGoogleのDeepMind社により開発された、人工知能 (AI) プログラムを用いた、アミノ酸配列からタンパク質の立体構造を予測するツールです。2020年にAF2の開発が発表され、2021年にNature誌より論文が報告されました。このAF2は精度が非常に高いことソースコードが公開されていたことにより、様々な論文でタンパク質の立体構造予測に用いられています。現時点でもNature姉妹雑誌などに、結晶構造解析をせずに論文を出すことができております。さらにAF2を利用して、AutoDock Vinaなどのリガンドとタンパク質のドッキングシミュレーションツールとの併用としても用いることができるようになりました。また現在、AlphaFold Protein Databaseには、Uniprotに登録されているタンパク質のうち、AF2で構築された2億個の立体構造が登録されています。

AF2の仕組み(参考文献1より引用)

AF2からAF3への変更点

大きな違いとしてはタンパク質とDNA、tRNAなど含むRNA、金属イオンなどの原子、小分子などとの複合体を予測できるという点、正確性の向上予想構造を出力するまでのスピードの向上などが挙げられます。今までは上述したようにAF2で構築した後に、別のツールを用いてドッキングする必用がありました。一方AF3では1つのツールで複合体を予測できる、という点が今回のAF3の大きな強みではないかと考えられます。

AF3の予測構造

実際に論文に挙がっている予測構造をお示しします。図にはタンパク質とDNAの複合体の予測構造を示しております。DNAが明後日の方向にいる様子は見られませんね。

続いては2つのタンパク質、RNA (tRNA) 、金属イオン (亜鉛2分子) の複合体です。こちらも非常に良く複合体が形成されている様子が見られると思います。

紫がRNA、シアンがタンパク質、黄色が金属イオン

 

AF3の使い方

AF3を実際に使ってみました。使い方はDeepMind社がYouTubeに挙げておられます。
まずこちらのAF3のサーバーにアクセスします。すると以下のような画面になります。このとき上のserverはまだ薄いグレーとなっております。Googleアカウントでログインするとここが黒くなり、使用することが可能となります。

使えるようになると以下の画面になります。

+Add entryを押すことで、入力するタンパク質や金属イオン、DNAなどを増やすことができます。まず論文でも採用されており、上記にも示しました2つのタンパク質、RNA (tRNA) 、金属イオン (亜鉛2分子) の複合体をエントリーした様子を示します。すると以下のような画面になります。タンパク質や核酸はそれぞれアミノ酸配列や塩基配列を入力し、金属イオンの場合はすでに登録されているイオンから選ぶ形式となっておりました。同じようにリガンドも選ぶことができましたが、今のところATPなどの生体分子しか選べないようです。

こちらで動かすと、先に示したような複合体が予想構造として出力されました。上のDownloadを押すと、PyMOLでも動かせるCIFファイルなどがダウンロードできます。

実際に使ってみた

本記事では、ケムステでも取り上げられたことのあるP450 BM3の予測構造を作ってみたいと思います。P450はヘム鉄をリガンドとして常に持つため、このヘム鉄が正常な位置に固定されているか確認してみたいと思います。
始めにserver画面のproteinにP450 BM3のアミノ酸配列を、リガンドとしてHeminを選択してみました。
実際に走らせてみたとこと、たった2分半で予測が終了してしまいました!!!X (旧Twitter) でも速いと話題になってはいましたが、この速度は驚きですね!予測構造では、それらしい位置にヘム鉄が結合しておりました。

そこでヘム鉄とP450 BM3の共結晶構造と比較してみました!するとリガンドであるヘム鉄は正常な位置に結合していることがわかりました!!タンパク質全体もRMSD値が0.628と非常に小さな値をとっており、素晴らしい予測結果を出力してくれました!

緑がAF3で構築した構造、シアンが共結晶構造解析により得られた構造。中央に存在するのがヘム鉄

今後の展望・期待

今はまだβ版であり、また論文も完全にパブリッシュされている訳ではありませんが、現時点ですでに非常に正確な予測結果出力までのスピード、そして1番の強みである複合体の予測までできるというのは、創薬に始まり様々な分野で用いられることとなるでしょう。ただ研究者の中でも話題にも挙がっていますが、留意すべき点として、あくまでも予測構造であるため、出力した結果が実際の構造と違うじゃないか!という意見は的外れな気もすると同時に、予測構造すべてを信じてしまうのも良くないと思いました。またAF2が非常に利用された部分については、ソースコードの開示が非常に貢献しておりました。実際にX (旧Twitter) では、今回の論文のReviewerが名乗り出て、AF2のソースコードの開示がどれだけ貢献したかを伝えたものの、開示には至らなかったと述べております。
まだまだこのAF3は話題の渦中ですが、ケムステでも引き続き追っていきたいと思います!!

関連記事・文献・サイト

2024年ノーベル化学賞は、「タンパク質の計算による設計・構造予測」へ : ケムステ記事(2024/10/9)

https://ja.wikipedia.org/wiki/AlphaFold : Wikipedia
Moriwaki, Y. JSBi Bioinformatics Review2022, 3, 47-60. https://doi.org/10.11234/jsbibr.2022.3 : AF2の仕組みについての総説 (和文)
話題のAlphaFold2を使ってみた : ケムステ記事(2021/7/21)
https://blog.google/technology/ai/google-deepmind-isomorphic-alphafold-3-ai-model/ : Google DeepMind社によるAF3の説明
https://zenn.dev/tonets/articles/dd8c3855eadb2b : AF3の論文の日本語解説

参考文献

  1. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S. A. A.; Ballard, A. J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A. W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596 (7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2.

関連書籍

The Journey of Demis Hassabis: From Chess Prodigy to Deepmind Visionary

The Journey of Demis Hassabis: From Chess Prodigy to Deepmind Visionary

Johnson, Glen D.
¥2,263(as of 12/13 14:54)
Amazon product information

熊葛

投稿者の記事一覧

天然有機化合物の生合成研究を行っております。遺伝子工学から酵素工学、有機化学など、広い分野に興味を持っております。

関連記事

  1. ビニグロールの全合成
  2. スーパーなパーティクル ースーパーパーティクルー
  3. タンパク質の構造ゆらぎに注目することでタンパク質と薬の結合親和性…
  4. 第10回慶應有機化学若手シンポジウム
  5. みんな大好きBRAINIAC
  6. (+)-フロンドシンBの超短工程合成
  7. MSI.TOKYO「MULTUM-FAB」:TLC感覚でFAB-…
  8. 「超分子重合によるp-nヘテロ接合の構築」― インド国立学際科学…

注目情報

ピックアップ記事

  1. プリリツェフ エポキシ化 Prilezhaev Epoxidation
  2. Rではじめるケモ・マテリアルズ・インフォマティクスープログラミング・ノックで基礎を完全習得ー
  3. 【書籍】英文ライティングの基本原則をおさらい:『The Element of Style』
  4. 溝呂木・ヘック反応 Mizoroki-Heck Reaction
  5. 生きた細胞内でケイ素と炭素がはじめて結合!
  6. 佐治木 弘尚 Hironao Sajiki
  7. 触媒表面に吸着した分子の動きと分子変換過程を可視化~分子の動きが触媒性能に与える影響を解明~
  8. 芳香族性に関する新概念と近赤外吸収制御への応用
  9. 第21回「有機化学で生命現象を理解し、生体反応を制御する」深瀬 浩一 教授
  10. ResearchGateに対するACSとElsevierによる訴訟で和解が成立

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年5月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP