[スポンサーリンク]

一般的な話題

AlphaFold3の登場!!再びブレイクスルーとなりうるのか~実際にβ版を使用してみた~

[スポンサーリンク]

 

2021年にタンパク質の立体構造予測ツールであるAlphaFold2 (AF2) が登場し、様々な分野において非常に大きな影響力をもたらしました1。現時点でもAF2を用いた研究論文は多く、AF2報告論文の引用数は20000件を超えます。今回はNature誌に、AF2の改良版であり、かつ複合体の予測を行えるAF3が報告されたので、こちらについて紹介したいと思います。

Accurate structure prediction of biomolecular interactions with AlphaFold 3
Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf Ronneberger, Lindsay Willmore, Victor Bapst, Pushmeet Kohli, Max Jaderberg, Demis Hassabis, John M. Jumper et al., Nature 2024, under revised
DOI : 10.1038/s41586-024-07487-w

AlphaFold (AF) とは?

AFはGoogleのDeepMind社により開発された、人工知能 (AI) プログラムを用いた、アミノ酸配列からタンパク質の立体構造を予測するツールです。2020年にAF2の開発が発表され、2021年にNature誌より論文が報告されました。このAF2は精度が非常に高いことソースコードが公開されていたことにより、様々な論文でタンパク質の立体構造予測に用いられています。現時点でもNature姉妹雑誌などに、結晶構造解析をせずに論文を出すことができております。さらにAF2を利用して、AutoDock Vinaなどのリガンドとタンパク質のドッキングシミュレーションツールとの併用としても用いることができるようになりました。また現在、AlphaFold Protein Databaseには、Uniprotに登録されているタンパク質のうち、AF2で構築された2億個の立体構造が登録されています。

AF2の仕組み(参考文献1より引用)

AF2からAF3への変更点

大きな違いとしてはタンパク質とDNA、tRNAなど含むRNA、金属イオンなどの原子、小分子などとの複合体を予測できるという点、正確性の向上予想構造を出力するまでのスピードの向上などが挙げられます。今までは上述したようにAF2で構築した後に、別のツールを用いてドッキングする必用がありました。一方AF3では1つのツールで複合体を予測できる、という点が今回のAF3の大きな強みではないかと考えられます。

AF3の予測構造

実際に論文に挙がっている予測構造をお示しします。図にはタンパク質とDNAの複合体の予測構造を示しております。DNAが明後日の方向にいる様子は見られませんね。

続いては2つのタンパク質、RNA (tRNA) 、金属イオン (亜鉛2分子) の複合体です。こちらも非常に良く複合体が形成されている様子が見られると思います。

紫がRNA、シアンがタンパク質、黄色が金属イオン

 

AF3の使い方

AF3を実際に使ってみました。使い方はDeepMind社がYouTubeに挙げておられます。
まずこちらのAF3のサーバーにアクセスします。すると以下のような画面になります。このとき上のserverはまだ薄いグレーとなっております。Googleアカウントでログインするとここが黒くなり、使用することが可能となります。

使えるようになると以下の画面になります。

+Add entryを押すことで、入力するタンパク質や金属イオン、DNAなどを増やすことができます。まず論文でも採用されており、上記にも示しました2つのタンパク質、RNA (tRNA) 、金属イオン (亜鉛2分子) の複合体をエントリーした様子を示します。すると以下のような画面になります。タンパク質や核酸はそれぞれアミノ酸配列や塩基配列を入力し、金属イオンの場合はすでに登録されているイオンから選ぶ形式となっておりました。同じようにリガンドも選ぶことができましたが、今のところATPなどの生体分子しか選べないようです。

こちらで動かすと、先に示したような複合体が予想構造として出力されました。上のDownloadを押すと、PyMOLでも動かせるCIFファイルなどがダウンロードできます。

実際に使ってみた

本記事では、ケムステでも取り上げられたことのあるP450 BM3の予測構造を作ってみたいと思います。P450はヘム鉄をリガンドとして常に持つため、このヘム鉄が正常な位置に固定されているか確認してみたいと思います。
始めにserver画面のproteinにP450 BM3のアミノ酸配列を、リガンドとしてHeminを選択してみました。
実際に走らせてみたとこと、たった2分半で予測が終了してしまいました!!!X (旧Twitter) でも速いと話題になってはいましたが、この速度は驚きですね!予測構造では、それらしい位置にヘム鉄が結合しておりました。

そこでヘム鉄とP450 BM3の共結晶構造と比較してみました!するとリガンドであるヘム鉄は正常な位置に結合していることがわかりました!!タンパク質全体もRMSD値が0.628と非常に小さな値をとっており、素晴らしい予測結果を出力してくれました!

緑がAF3で構築した構造、シアンが共結晶構造解析により得られた構造。中央に存在するのがヘム鉄

今後の展望・期待

今はまだβ版であり、また論文も完全にパブリッシュされている訳ではありませんが、現時点ですでに非常に正確な予測結果出力までのスピード、そして1番の強みである複合体の予測までできるというのは、創薬に始まり様々な分野で用いられることとなるでしょう。ただ研究者の中でも話題にも挙がっていますが、留意すべき点として、あくまでも予測構造であるため、出力した結果が実際の構造と違うじゃないか!という意見は的外れな気もすると同時に、予測構造すべてを信じてしまうのも良くないと思いました。またAF2が非常に利用された部分については、ソースコードの開示が非常に貢献しておりました。実際にX (旧Twitter) では、今回の論文のReviewerが名乗り出て、AF2のソースコードの開示がどれだけ貢献したかを伝えたものの、開示には至らなかったと述べております。
まだまだこのAF3は話題の渦中ですが、ケムステでも引き続き追っていきたいと思います!!

関連記事・文献・サイト

2024年ノーベル化学賞は、「タンパク質の計算による設計・構造予測」へ : ケムステ記事(2024/10/9)

https://ja.wikipedia.org/wiki/AlphaFold : Wikipedia
Moriwaki, Y. JSBi Bioinformatics Review2022, 3, 47-60. https://doi.org/10.11234/jsbibr.2022.3 : AF2の仕組みについての総説 (和文)
話題のAlphaFold2を使ってみた : ケムステ記事(2021/7/21)
https://blog.google/technology/ai/google-deepmind-isomorphic-alphafold-3-ai-model/ : Google DeepMind社によるAF3の説明
https://zenn.dev/tonets/articles/dd8c3855eadb2b : AF3の論文の日本語解説

参考文献

  1. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S. A. A.; Ballard, A. J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A. W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596 (7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2.

関連書籍

The Journey of Demis Hassabis: From Chess Prodigy to Deepmind Visionary

The Journey of Demis Hassabis: From Chess Prodigy to Deepmind Visionary

Johnson, Glen D.
¥2,263(as of 01/28 12:43)
Amazon product information

熊葛

投稿者の記事一覧

天然有機化合物の生合成研究を行っております。遺伝子工学から酵素工学、有機化学など、広い分野に興味を持っております。

関連記事

  1. ワイリーからキャンペーンのご案内 – 化学会・薬学会…
  2. 自宅で抽出実験も?自宅で使える理化学ガラス「リカシツ」
  3. 中国へ行ってきました 西安・上海・北京編①
  4. 天然有機化合物のNMRデータベース「CH-NMR-NP」
  5. 反応化学の活躍できる場を広げたい!【ケムステ×Hey!Labo …
  6. 近傍PCET戦略でアルコキシラジカルを生成する
  7. 【書籍】10分間ミステリー
  8. アメリカで Ph.D. を取る –結果発表ーッの巻–

注目情報

ピックアップ記事

  1. デーブナー・フォン=ミラー キノリン合成 Doebner-von Miller quinoline synthesis
  2. バイオ医薬 基礎から開発まで
  3. オープンアクセス論文が半数突破か
  4. 住友化学、液晶関連事業に100億円投資・台湾に新工場
  5. 研究者の活躍の場は「研究職」だけなのだろうか?
  6. ファンケル、「ツイントース」がイソフラボンの生理活性を高める働きなどと発表
  7. アルツハイマー原因物質、緑茶成分に抑制機能・埼玉医大など
  8. ロータリーエバポレーターの回転方向で分子の右巻き、左巻きを制御! ―生命のホモキラリティーの起源に踏み込む―
  9. ティム・スワガー Timothy M. Swager
  10. 多環式骨格を華麗に構築!(–)-Zygadenineの不斉全合成

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年5月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP