[スポンサーリンク]

一般的な話題

計算化学:基底関数って何?

[スポンサーリンク]

前回の記事でも述べたように、計算化学ではSchrödinger方程式を厳密ではなくとも解くために、波動関数の自由度を制限します。実際に計算する際には、どのような基底関数を選択するかで、波動関数の自由度が決まります。

今回も細かいところは省略して、ザックリと基底関数について説明します。

 

自由度の制限

まず、「波動関数を有限個の関数φ(=基底関数)の線形結合によって書ける」と仮定します。そうすると、分子軌道ψは下式で表せるようになります。Cは分子軌道係数、φは分子軌道、Nは分子軌道の総数です。

基底関数1

ここで更に、LCAO近似を用います。LCAOとは、Linear Combinations of Atomic Orbitalsの略です。分子は原子の集合体、つまり「分子軌道は、原子軌道の線形結合で表す事が出来る」という考えに基づいており、基底関数を各原子ごとに用意します。

例えば、CとHからなる化合物であったら下式のようになります。

 

基底関数4

 

Slater型基底&Gauss型基底

Slater型関数は、原子軌道の近似関数として広く用いられています。Gauss型関数は、Slater型関数に正確性において劣りますが、計算コストの面から、ほとんどの計算プログラムに置いて採用されています。

他に平面型基底、ウェーブレット型基底、混合基底などありますが、今回は割愛します。

基底関数2

最小規定系(minimal basis set)STO-nGなど聞いた事がある人が多いと思います。これは、各原子の内殻と価電子殻にそれぞれ1つずつSlater型関数を当てはめていったものです。

STO-nGは、Slater型関数をn個のgauss型関数を用いて表したものです。Slater型関数は、計算に時間がかかるため、gauss型関数を複数個用いて表しているのです。ちなみにSTOはSlater Type Orbitalの略です。

 

DZ、TZ、QZ

しかしながら、1個の原子が単独で存在している時の原子軌道と分子の中に存在している時の原子軌道では形が異なります。このようなとき、原子軌道の自由度を高めるために、異なる軌道指数を持つ複数個の関数を用います。異なる2つの軌道指数を有する関数セットをDouble Zeta(DZ)基底関数と呼びます。同様に、3つ、4つの関数をもつものをTriple Zeta(TZ)基底関数Quadruple Zeta(QZ)基底関数と呼びます。

このように、軌道指数を増やしていくほど、軌道の自由度・計算の精度は上がっていきますが、同時に計算コストも上がっていきます。

 

基本的な基底関数

6-31Gが最も頻繁に用いられていますが、有名なものとして次のような4種類の基底関数が存在します。(他にも無数にありますが、、、)

Pople系Huzinaga-Dunning系Roos ANO系Dunning cc-pV NZ系です。

基底関数3

 

 

どの種類を選ぶかは、先行研究を参考にすると言ったところでしょうか?「みんなが使っているものを使う」というのが鉄則です。非常に特殊な規定関数を使うと査読する人も「???」と思ってしまうでしょう!

もしも先行研究の無いものだったら、簡単な系について計算してみて実験値との誤差が少ないものを選ぶのが良いと思います。

 

分極(polarization)関数分散(diffuse)関数ECPなどに関しては今回説明を省略します。

 

基底関数には無数に種類がありますが、それぞれ周期表情のどの原子にまで適用できるかという事が決まっています。ちなみに筆者は、このページでよく確認しています。

http://www.hpc.co.jp/gaussian_help/m_basis_sets.htm

 

と、ここまで細かい説明は抜きにして基底関数についてザックリと説明しました。この記事の内容さえ理解できれば、あとは自分で勉強できると思います。

続きは実践有るのみです!

Avatar photo

ゼロ

投稿者の記事一覧

女の子。研究所勤務。趣味は読書とハイキング ♪
ハンドルネームは村上龍の「愛と幻想のファシズム」の登場人物にちなんでま〜す。5 分後の世界、ヒュウガ・ウイルスも好き!

関連記事

  1. メソリティック開裂を経由するカルボカチオンの触媒的生成法
  2. 第四回 ケムステVシンポ「持続可能社会をつくるバイオプラスチック…
  3. 究極の脱水溶媒 Super2(スーパー スクエア):関東化学
  4. 糸状菌から新たなフラボノイド生合成システムを発見
  5. ベンゼン一つで緑色発光分子をつくる
  6. タンパク質の定量法―ビシンコニン酸法 Protein Quant…
  7. ボリルメタン~メタンの触媒的ホウ素化反応
  8. サイエンス・コミュニケーションをマスターする

注目情報

ピックアップ記事

  1. 小さなケイ素酸化物を得る方法
  2. 【25卒 化学業界就活スタート講座 5月13日(土)Zoomウェビナー開催決定!】化学系学生のための就活×太陽ホールディングス
  3. ロタキサンを用いた機械的刺激に応答する効率的な分子放出
  4. 13族元素含有ベンゼンの合成と性質の解明
  5. 富士フイルム、英社を245億円で買収 産業用の印刷事業拡大
  6. 1回の実験で高活性な金属ナノ粒子触媒
  7. マーティン・カープラス Martin Karplus
  8. マダニを外しやすくするある物質について(諸説あり)
  9. 2020年の人気記事執筆者からのコメント全文を紹介
  10. 第18回日本化学連合シンポジウム「社会実装を実現する化学人材創出における新たな視点」

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2014年12月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP