[スポンサーリンク]

一般的な話題

計算化学:基底関数って何?

[スポンサーリンク]

前回の記事でも述べたように、計算化学ではSchrödinger方程式を厳密ではなくとも解くために、波動関数の自由度を制限します。実際に計算する際には、どのような基底関数を選択するかで、波動関数の自由度が決まります。

今回も細かいところは省略して、ザックリと基底関数について説明します。

 

自由度の制限

まず、「波動関数を有限個の関数φ(=基底関数)の線形結合によって書ける」と仮定します。そうすると、分子軌道ψは下式で表せるようになります。Cは分子軌道係数、φは分子軌道、Nは分子軌道の総数です。

基底関数1

ここで更に、LCAO近似を用います。LCAOとは、Linear Combinations of Atomic Orbitalsの略です。分子は原子の集合体、つまり「分子軌道は、原子軌道の線形結合で表す事が出来る」という考えに基づいており、基底関数を各原子ごとに用意します。

例えば、CとHからなる化合物であったら下式のようになります。

 

基底関数4

 

Slater型基底&Gauss型基底

Slater型関数は、原子軌道の近似関数として広く用いられています。Gauss型関数は、Slater型関数に正確性において劣りますが、計算コストの面から、ほとんどの計算プログラムに置いて採用されています。

他に平面型基底、ウェーブレット型基底、混合基底などありますが、今回は割愛します。

基底関数2

最小規定系(minimal basis set)STO-nGなど聞いた事がある人が多いと思います。これは、各原子の内殻と価電子殻にそれぞれ1つずつSlater型関数を当てはめていったものです。

STO-nGは、Slater型関数をn個のgauss型関数を用いて表したものです。Slater型関数は、計算に時間がかかるため、gauss型関数を複数個用いて表しているのです。ちなみにSTOはSlater Type Orbitalの略です。

 

DZ、TZ、QZ

しかしながら、1個の原子が単独で存在している時の原子軌道と分子の中に存在している時の原子軌道では形が異なります。このようなとき、原子軌道の自由度を高めるために、異なる軌道指数を持つ複数個の関数を用います。異なる2つの軌道指数を有する関数セットをDouble Zeta(DZ)基底関数と呼びます。同様に、3つ、4つの関数をもつものをTriple Zeta(TZ)基底関数Quadruple Zeta(QZ)基底関数と呼びます。

このように、軌道指数を増やしていくほど、軌道の自由度・計算の精度は上がっていきますが、同時に計算コストも上がっていきます。

 

基本的な基底関数

6-31Gが最も頻繁に用いられていますが、有名なものとして次のような4種類の基底関数が存在します。(他にも無数にありますが、、、)

Pople系Huzinaga-Dunning系Roos ANO系Dunning cc-pV NZ系です。

基底関数3

 

 

どの種類を選ぶかは、先行研究を参考にすると言ったところでしょうか?「みんなが使っているものを使う」というのが鉄則です。非常に特殊な規定関数を使うと査読する人も「???」と思ってしまうでしょう!

もしも先行研究の無いものだったら、簡単な系について計算してみて実験値との誤差が少ないものを選ぶのが良いと思います。

 

分極(polarization)関数分散(diffuse)関数ECPなどに関しては今回説明を省略します。

 

基底関数には無数に種類がありますが、それぞれ周期表情のどの原子にまで適用できるかという事が決まっています。ちなみに筆者は、このページでよく確認しています。

http://www.hpc.co.jp/gaussian_help/m_basis_sets.htm

 

と、ここまで細かい説明は抜きにして基底関数についてザックリと説明しました。この記事の内容さえ理解できれば、あとは自分で勉強できると思います。

続きは実践有るのみです!

Avatar photo

ゼロ

投稿者の記事一覧

女の子。研究所勤務。趣味は読書とハイキング ♪
ハンドルネームは村上龍の「愛と幻想のファシズム」の登場人物にちなんでま〜す。5 分後の世界、ヒュウガ・ウイルスも好き!

関連記事

  1. シアノヒドリンをカルボン酸アミドで触媒的に水和する
  2. 糖鎖合成化学は芸術か?
  3. ホウ酸団子のはなし
  4. 飽和C–H結合を直接脱離基に変える方法
  5. 電子一つで結合!炭素の新たな結合を実現
  6. 技あり!マイルドにエーテルを切ってホウ素で結ぶ
  7. ポンコツ博士の海外奮闘録⑥ 〜博士,アメ飯を食す。おうち系お肉編…
  8. レジオネラ菌のはなし ~水回りにはご注意を~

注目情報

ピックアップ記事

  1. 有機合成化学協会誌2018年2月号:全アリール置換芳香族化合物・ペルフルオロアルキル化・ビアリール型人工アミノ酸・キラルグアニジン触媒・[1,2]-ホスファ-ブルック転位
  2. 桝太一が聞く 科学の伝え方
  3. アメリカで Ph.D. を取る –結果発表ーッの巻–
  4. 石谷教授最終講義「人工光合成を目指して」を聴講してみた
  5. 【ナード研究所】新卒採用情報(2025年卒)
  6. 【Q&Aシリーズ❷ 技術者・事業担当者向け】 マイクロ波による焼成・乾燥プロセス
  7. 有機合成化学協会誌2018年1月号:光学活性イミダゾリジン含有ピンサー金属錯体・直截カルコゲン化・インジウム触媒・曲面π構造・タンパク質チオエステル合成
  8. ジョン・アンソニー・ポープル Sir John Anthony Pople
  9. 円偏光発光を切り替える色素ー暗号通信への応用に期待ー
  10. 免疫系に捕そくされない超微粒子の薬剤

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2014年12月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

データ駆動型生成AIの限界に迫る!生成AIで信頼性の高い分子設計へ

第663回のスポットライトリサーチは、横浜市立大学大学院 生命医科学研究科(生命情報科学研究室)博士…

MDSのはなし 骨髄異形成症候群とそのお薬の開発状況 その2

Tshozoです。前回はMDSについての簡易な情報と歴史と原因を述べるだけで終わってしまったので…

水-有機溶媒の二液相間電子伝達により進行する人工光合成反応

第662回のスポットライトリサーチは、京都大学 大学院工学研究科 物質エネルギー化学専攻 阿部竜研究…

ケムステイブニングミキサー 2025 報告

3月26日から29日の日本化学会第105春季年会に参加されたみなさま、おつかれさまでした!運営に…

【テーマ別ショートウェビナー】今こそ変革の時!マイクロ波が拓く脱炭素時代のプロセス革新

■ウェビナー概要プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波…

予期せぬパラジウム移動を経る環化反応でベンゾヘテロールを作る

1,2-Pd移動を含む予期せぬ連続反応として進行することがわかり、高収率で生成物が得られた。 合…

【27卒】太陽HD研究開発 1day仕事体験

太陽HDでの研究開発職を体感してみませんか?私たちの研究活動についてより近くで体験していただく場…

熱がダメなら光当てれば?Lugdunomycinの全合成

光化学を駆使した、天然物Lugdunomycinの全合成が報告された。紫外光照射による異性化でイソベ…

第59回有機反応若手の会

開催概要有機反応若手の会は、全国の有機化学を研究する大学院生を中心とした若手研究…

多環式分子を一挙に合成!新たなo-キノジメタン生成法の開発

第661回のスポットライトリサーチは、早稲田大学大学院先進理工学研究科(山口潤一郎研究室)博士課程1…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP