[スポンサーリンク]

化学者のつぶやき

U≡N結合、合成さる

[スポンサーリンク]

今回はウランニトリド結合形成の研究をご紹介します(トップ絵はこちらより借用)

Tshozoです。今回はChemstation-Twitter(こちら)で2012年6月30日付けで紹介されました、Science掲載のウランニトリド結合合成について詳細をご報告します(紹介記事はこちら、本論文はこちら)。窒固定に関する記事を作成中の私としては黙っていられない中身で・・・窒素と聞いただけでもう堪りません。

ただ、申し訳ないのですが都合により当該pdfを直接閲覧できないため、詳細合成は各自図書館などでご覧頂くとして、取り巻く環境などを含めこの成果がどういう位置づけにあるのか、という視点でご紹介したいと思います。

 

まずは概要から。現在巷で問題になっている原子力発電、その燃料に現在は酸化ウランが使われています。これは化学的に非常に安定であるためですが、その反面熱伝導率が極めて低い(金属態ウランに比較し1/4~1/7)に留まるため、最大瞬間出力に比例した分量のウランが必要になってしまいます。これを解決するため、熱伝導率が高く高密度の金属態である炭化ウランと窒化ウランが候補に挙がっていますが、このうち今回の成果は後者の高純度合成や取扱いに不可欠(と言われているもの)です。

 

何でまた扱い難いウランなんざ持ち出すのかと言われそうですが、海外ではかなり歴史は古く、こちらの総論のようにLANL(米国ロスアラモス国研・マンハッタン計画の主要研究所)を中心に様々な錯体合成が試みられてきました。例えば錯体化学で有名なMITのCummins教授などもウラン等のアクチノイド類を中心金属とした錯体合成に乗り出しています。

で、今回の話。元々はLANLの論文(RK Thomson et al., Nature Chem., 2010, DOI: 10.1038/nchem.705)が源流になっています。これは初めてU≡N結合を持つ中間体を合成した例になります。

uranium-nitride-410_tcm18-186448

LANLによるウランニトリド結合の初検証例(こちらより引用)

 

ところが上の図を見てもらえば分かるとおり、折角合成したU≡N結合がリガンドC5H5中のC-H結合を速攻でぶち壊すことがわかりました。ここでNは非常に電子供与性が高い状態になっているために下記のような遷移がすぐ起きます(この活性の強さを生かして別の反応にも生かそうとする動きもありますが、今回は割愛します)。結局極低温でないと安定に存在できなかったようです。

 

UN_04.jpg

上記の中間体の不安定さを示す例(上記論文より引用)

 

そこで今回、イギリスNottingum大のLiddle教授らがこの反応性を抑えつつ室温でも安定なU≡N結合を実現する手法を編み出しました。

 

UN_03.jpg

今回のU≡N合成スキーム(元記事より引用)

 キーになったのは2点、1.Ligandの工夫 2.中間体の安定化 です。

まず前者1.Ligandの工夫点ですが、要は「U≡N生成以外の反応を抑制する嵩高いものを採用した」ことにあります。図の反応物2を見てもらうとUが4Nに配位されており、U≡N以外のところには何も反応できないようになっています。加えてSiPri3という非常にバルキーな鎖を取り付けて立体障害性を高めたことがおそらくキーだったのでしょう。

なおこのLigandは、ノーベル賞受賞者であるMITのSchrock教授が世界初のMoによる触媒的窒素固定で用いたものとよく似ています。これも副反応を避ける目的で用いられていました。いずれもLigand合成自体がかなり難しいようなのですが、中心金属を守り触媒反応を成立させるには適した構造と思われます。

 UN_05.jpg

Schrock教授による世界初の触媒的窒素固定の例

(Yandulov, Schrock Science 2003, 301, 76)

 そしてもう一つのキーは、NaN中のNaで中間体を安定化させたことです。これをクラウンエーテルでそっと外し、イオン化させて全体を安定化したまま単離したというのです。本分野の第一人者であるカナダBritish Columbia大学のFryzuk教授の総論によれば、還元剤のMgやNaの生成物イオンをトラップする目的で比較的よく使用される手段のようなのですが、純粋な化学を修めたことのない自分には非常に新鮮な手法でした。

ということで使いやすい核燃料への解明、または高純度抽出のための第1歩としてScience誌を飾った本論文。それ以外にも金属上に窒素原子を配位させるためのメカニズムの検討材料として興味深い成果だと思います。

注記:本件はあくまで窒素原子をウランのようなアクチノイド種にどう配位させるかという点に着目したもので、本記事を以って原発を肯定したものでは決してありません

Tshozo

Tshozo

投稿者の記事一覧

メーカ開発経験者(電気)。56歳。コンピュータを電算機と呼ぶ程度の老人。クラウジウスの論文から化学の世界に入る。ショーペンハウアーが嫌い。

関連記事

  1. アメリカで Ph.D. を取る –エッセイを書くの巻– (前編)…
  2. 動画で見れる!アメリカ博士留学生の一日
  3. 光触媒で人工光合成!二酸化炭素を効率的に資源化できる新触媒の開発…
  4. 炭素繊維は鉄とアルミに勝るか? 2
  5. 顕微鏡で化学反応を見る!?
  6. テストには書けない? カルボキシル化反応の話
  7. 水晶振動子マイクロバランス(QCM)とは~表面分析・生化学研究の…
  8. NMR解析ソフト。まとめてみた。①

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 化学の成果で脚光を浴びた小・中・高校生たち
  2. アルカリ金属でメトキシアレーンを求核的にアミノ化する
  3. パール・クノール ピロール合成 Paal-Knorr Pyrrole Synthesis
  4. スローン賞って知っていますか?
  5. ジスルフィド架橋型タンパク質修飾法 Disulfide-Bridging Protein Modification
  6. トリチウム水から完全無害な水素ガスを作り出す?
  7. パラジウム価格上昇中
  8. フッ素 Fluorine -水をはじく?歯磨き粉や樹脂への応用
  9. 2005年6月分の気になる化学関連ニュース投票結果
  10. 血液型をChemistryしてみよう!

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

第133回―「遺伝暗号リプログラミングと翻訳後修飾の研究」Jason Chin教授

第133回の海外化学者インタビューはジェイソン・チン教授です。ケンブリッジMRC分子生物学研究所のタ…

アメリカ大学院留学:卒業後の進路とインダストリー就活(3)

前回・前々回の記事では、アメリカのPhD取得後の進路について、一般的な進路やインダストリー就活の流れ…

リンだ!リンだ!ホスフィン触媒を用いたメチルアミノ化だ!

有機リン触媒とアリールボロン酸を用いたニトロメタンの還元的C–Nカップリング反応が報告された。本手法…

化学者のためのエレクトロニクス講座~次世代の通信技術編~

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLE…

第132回―「遷移金属触媒における超分子的アプローチ」Joost Reek教授

第132回の海外化学者インタビューはジュースト・リーク教授です。アムステルダム大学ファント・ホッフ分…

位置多様性・脱水素型クロスカップリング

第281回のスポットライトリサーチは、菅原真純 博士にお願いしました。菅原さんは理化学研究所…

エノールエーテルからα-三級ジアルキルエーテルをつくる

α-オキシラジカルを経るエノールエーテルのa位官能基化が開発された。種々のアルキルエノールエーテルと…

アメリカ大学院留学:卒業後の進路とインダストリー就活(2)

前回の記事では、アメリカのPhD取得後の進路について、一般的な進路や就活を始める時期について紹介しま…

Chem-Station Twitter

PAGE TOP